IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3935-d1543632.html
   My bibliography  Save this article

Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions

Author

Listed:
  • Ke-Lin Du

    (School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523668, China)

  • Bingchun Jiang

    (School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523668, China)

  • Jiabin Lu

    (Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China)

  • Jingyu Hua

    (School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China)

  • M. N. S. Swamy

    (Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

The kernel method is a tool that converts data to a kernel space where operation can be performed. When converted to a high-dimensional feature space by using kernel functions, the data samples are more likely to be linearly separable. Traditional machine learning methods can be extended to the kernel space, such as the radial basis function (RBF) network. As a kernel-based method, support vector machine (SVM) is one of the most popular nonparametric classification methods, and is optimal in terms of computational learning theory. Based on statistical learning theory and the maximum margin principle, SVM attempts to determine an optimal hyperplane by addressing a quadratic programming (QP) problem. Using Vapnik–Chervonenkis dimension theory, SVM maximizes generalization performance by finding the widest classification margin within the feature space. In this paper, kernel machines and SVMs are systematically introduced. We first describe how to turn classical methods into kernel machines, and then give a literature review of existing kernel machines. We then introduce the SVM model, its principles, and various SVM training methods for classification, clustering, and regression. Related topics, including optimizing model architecture, are also discussed. We conclude by outlining future directions for kernel machines and SVMs. This article functions both as a state-of-the-art survey and a tutorial.

Suggested Citation

  • Ke-Lin Du & Bingchun Jiang & Jiabin Lu & Jingyu Hua & M. N. S. Swamy, 2024. "Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions," Mathematics, MDPI, vol. 12(24), pages 1-57, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3935-:d:1543632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke-Lin Du & M. N. S. Swamy & Zhang-Quan Wang & Wai Ho Mow, 2023. "Matrix Factorization Techniques in Machine Learning, Signal Processing, and Statistics," Mathematics, MDPI, vol. 11(12), pages 1-50, June.
    2. Huang, Xiaolin & Shi, Lei & Suykens, Johan A.K., 2014. "Asymmetric least squares support vector machine classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 395-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
    2. José A. Sáez, 2022. "Noise Models in Classification: Unified Nomenclature, Extended Taxonomy and Pragmatic Categorization," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    3. Wenxin Zhu & Yunyan Song & Yingyuan Xiao, 2018. "A New Support Vector Machine Plus with Pinball Loss," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 52-70, April.
    4. Zhiyong Zhou & Gui Wang, 2024. "The Capped Separable Difference of Two Norms for Signal Recovery," Mathematics, MDPI, vol. 12(23), pages 1-10, November.
    5. Farooq, Muhammad & Steinwart, Ingo, 2017. "An SVM-like approach for expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 159-181.
    6. Huimin Pei & Qiang Lin & Liran Yang & Ping Zhong, 2021. "A novel semi-supervised support vector machine with asymmetric squared loss," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 159-191, March.
    7. Ye Tian & Zhibin Deng & Jian Luo & Yueqing Li, 2018. "An intuitionistic fuzzy set based S $$^3$$ 3 VM model for binary classification with mislabeled information," Fuzzy Optimization and Decision Making, Springer, vol. 17(4), pages 475-494, December.
    8. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3935-:d:1543632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.