IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v33y2016i3d10.1007_s00357-016-9214-6.html
   My bibliography  Save this article

Fidelity-Commensurability Tradeoff in Joint Embedding of Disparate Dissimilarities

Author

Listed:
  • Sancar Adali

    (Johns Hopkins University)

  • Carey E. Priebe

    (Johns Hopkins University)

Abstract

In various data settings, it is necessary to compare observations from disparate data sources. We assume the data is in the dissimilarity representation (Pękalska and Duin, 2005) and investigate a joint embedding method (Priebe et al., 2013) that results in a commensurate representation of disparate dissimilarities. We further assume that there are “matched” observations from different conditions which can be considered to be highly similar, for the sake of inference. The joint embedding results in the joint optimization of fidelity (preservation of within-condition dissimilarities) and commensurability (preservation of between-condition dissimilarities between matched observations). We show that the tradeoff between these two criteria can be made explicit using weighted raw stress as the objective function for multidimensional scaling. In our investigations, we use a weight parameter, w, to control the tradeoff, and choose match detection as the inference task. Our results show weights that are optimal (with respect to the inference task) are different than equal weights for commensurability and fidelity and the proposed weighted embedding scheme provides significant improvements in statistical power.

Suggested Citation

  • Sancar Adali & Carey E. Priebe, 2016. "Fidelity-Commensurability Tradeoff in Joint Embedding of Disparate Dissimilarities," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 485-506, October.
  • Handle: RePEc:spr:jclass:v:33:y:2016:i:3:d:10.1007_s00357-016-9214-6
    DOI: 10.1007/s00357-016-9214-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-016-9214-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-016-9214-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren Torgerson, 1952. "Multidimensional scaling: I. Theory and method," Psychometrika, Springer;The Psychometric Society, vol. 17(4), pages 401-419, December.
    2. Zhu, Mu & Ghodsi, Ali, 2006. "Automatic dimensionality selection from the scree plot via the use of profile likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 918-930, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Cencheng & Sun, Ming & Tang, Minh & Priebe, Carey E., 2014. "Generalized canonical correlation analysis for classification," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 310-322.
    2. Alexander Strehl & Joydeep Ghosh, 2003. "Relationship-Based Clustering and Visualization for High-Dimensional Data Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 208-230, May.
    3. Shin Ji-Hyung & Infante-Rivard Claire & Graham Jinko & McNeney Brad, 2012. "Adjusting for Spurious Gene-by-Environment Interaction Using Case-Parent Triads," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-23, January.
    4. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    6. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    7. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    8. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    9. Jinkai Yu & Wenjing Bi, 2019. "Evolution of Marine Environmental Governance Policy in China," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    10. Walesiak Marek & Dudek Andrzej, 2017. "Selecting the Optimal Multidimensional Scaling Procedure for Metric Data With R Environment," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 521-540, September.
    11. Mirta Galesic & A. Walkyria Goode & Thomas S. Wallsten & Kent L. Norman, 2018. "Using Tversky’s contrast model to investigate how features of similarity affect judgments of likelihood," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(2), pages 163-169, March.
    12. Lewis, R.M. & Trosset, M.W., 2006. "Sensitivity analysis of the strain criterion for multidimensional scaling," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 135-153, January.
    13. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    14. Hutchison, Paul D. & Daigle, Ronald J. & George, Benjamin, 2018. "Application of latent semantic analysis in AIS academic research," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 83-96.
    15. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    16. Benjamin B. Risk & David S. Matteson & David Ruppert & Ani Eloyan & Brian S. Caffo, 2014. "An evaluation of independent component analyses with an application to resting-state fMRI," Biometrics, The International Biometric Society, vol. 70(1), pages 224-236, March.
    17. Carter T. Butts & Kathleen M. Carley, 2005. "Some Simple Algorithms for Structural Comparison," Computational and Mathematical Organization Theory, Springer, vol. 11(4), pages 291-305, December.
    18. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    19. José Luis Ortega Priego, 2003. "A Vector Space Model as a methodological approach to the Triple Helix dimensionality: A comparative study of Biology and Biomedicine Centres of two European National Research Councils from a Webometri," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 429-443, October.
    20. Christopher T. Whelan & Mario Lucchini & Maurizio Pisati & Maitre, Bertrand, 2009. "Understanding the Socio-Economic Distribution and Consequences of Patterns of Multiple Deprivation: An Application of Self-Organising Maps," Papers WP302, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:33:y:2016:i:3:d:10.1007_s00357-016-9214-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.