IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v31y2014i2p194-218.html
   My bibliography  Save this article

Minkowski Generalizations of Ward’s Method in Hierarchical Clustering

Author

Listed:
  • Alan Lee
  • Bobby Willcox

Abstract

In this paper, we consider several generalizations of the popular Ward’s method for agglomerative hierarchical clustering. Our work was motivated by clustering software, such as the R function hclust, which accepts a distance matrix as input and applies Ward’s definition of inter-cluster distance to produce a clustering. The standard version of Ward’s method uses squared Euclidean distance to form the distance matrix. We explore the effect on the clustering of using other definitions of distance, such as the Minkowski distance. Copyright Classification Society of North America 2014

Suggested Citation

  • Alan Lee & Bobby Willcox, 2014. "Minkowski Generalizations of Ward’s Method in Hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 194-218, July.
  • Handle: RePEc:spr:jclass:v:31:y:2014:i:2:p:194-218
    DOI: 10.1007/s00357-014-9157-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-014-9157-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-014-9157-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Zhenmin Chen & John Ness, 1996. "Space-conserving agglomerative algorithms," Journal of Classification, Springer;The Classification Society, vol. 13(1), pages 157-168, March.
    3. Meila, Marina, 2007. "Comparing clusterings--an information based distance," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 873-895, May.
    4. Gabor J. Szekely & Maria L. Rizzo, 2005. "Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 151-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Shepelev & Alexandr Glushkov & Olga Fadina & Aleksandr Gritsenko, 2022. "Comparative Evaluation of Road Vehicle Emissions at Urban Intersections with Detailed Traffic Dynamics," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    2. Abdellah Saoualih & Larbi Safaa & Ayoub Bouhatous & Marc Bidan & Dalia Perkumienė & Marius Aleinikovas & Benas Šilinskas & Aidanas Perkumas, 2024. "Exploring the Tourist Experience of the Majorelle Garden Using VADER-Based Sentiment Analysis and the Latent Dirichlet Allocation Algorithm: The Case of TripAdvisor Reviews," Sustainability, MDPI, vol. 16(15), pages 1-36, July.
    3. Hossein Baloochian & Hamid Reza Ghaffary, 2019. "Multiclass Classification Based on Multi-criteria Decision-making," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 140-151, April.
    4. Huan Li & Liyuan Chai & Zhihui Yang & Weichun Yang & Qi Liao & Zhe Cao & Yanchun Peng, 2020. "Systematic Assessment of Health Risk from Metals in Surface Sediment of the Xiangjiang River, China," IJERPH, MDPI, vol. 17(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Lucio & Raúl Mínguez & Asier Minondo & Francisco Requena, 2016. "Networks and the Dynamics of Firms' Export Portfolio: Evidence for Mexico," The World Economy, Wiley Blackwell, vol. 39(5), pages 708-736, May.
    2. Francisco de A. T. Carvalho & Antonio Irpino & Rosanna Verde & Antonio Balzanella, 2022. "Batch Self-Organizing Maps for Distributional Data with an Automatic Weighting of Variables and Components," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 343-375, July.
    3. Trudie Strauss & Michael Johan von Maltitz, 2017. "Generalising Ward’s Method for Use with Manhattan Distances," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    4. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    5. Kemmawadee Preedalikit & Daniel Fernández & Ivy Liu & Louise McMillan & Marta Nai Ruscone & Roy Costilla, 2024. "Row mixture-based clustering with covariates for ordinal responses," Computational Statistics, Springer, vol. 39(5), pages 2511-2555, July.
    6. Ekaterina Kovaleva & Boris Mirkin, 2015. "Bisecting K-Means and 1D Projection Divisive Clustering: A Unified Framework and Experimental Comparison," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 414-442, October.
    7. Christian Hennig, 2022. "An empirical comparison and characterisation of nine popular clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 201-229, March.
    8. Pavel I. Blus & Rustam V. Plotnikov, 2022. "Spatial clustering for reducing intraregional unevenness," Journal of New Economy, Ural State University of Economics, vol. 23(1), pages 88-108, April.
    9. Renato Amorim, 2015. "Feature Relevance in Ward’s Hierarchical Clustering Using the L p Norm," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 46-62, April.
    10. Stefano Tonellato, 2019. "Bayesian nonparametric clustering as a community detection problem," Working Papers 2019: 20, Department of Economics, University of Venice "Ca' Foscari".
    11. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.
    12. von Borries, George & Wang, Haiyan, 2009. "Partition clustering of high dimensional low sample size data based on p-values," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3987-3998, October.
    13. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    14. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    15. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    16. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    17. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    19. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:31:y:2014:i:2:p:194-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.