IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v30y2013i1p56-74.html
   My bibliography  Save this article

Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms

Author

Listed:
  • Tom Wilderjans
  • Dirk Depril
  • Iven Van Mechelen

Abstract

The additive biclustering model for two-way two-mode object by variable data implies overlapping clusterings of both the objects and the variables together with a weight for each bicluster (i.e., a pair of an object and a variable cluster). In the data analysis, an additive biclustering model is fitted to given data by means of minimizing a least squares loss function. To this end, two alternating least squares algorithms (ALS) may be used: (1) PENCLUS, and (2) Baier’s ALS approach. However, both algorithms suffer from some inherent limitations, which may hamper their performance. As a way out, based on theoretical results regarding optimally designing ALS algorithms, in this paper a new ALS algorithm will be presented. In a simulation study this algorithm will be shown to outperform the existing ALS approaches. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.
  • Handle: RePEc:spr:jclass:v:30:y:2013:i:1:p:56-74
    DOI: 10.1007/s00357-013-9120-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-013-9120-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-013-9120-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boris Mirkin & Phipps Arabie & Lawrence Hubert, 1995. "Additive two-mode clustering: The error-variance approach revisited," Journal of Classification, Springer;The Classification Society, vol. 12(2), pages 243-263, September.
    2. Hand, David J. & Krzanowski, Wojtek J., 2005. "Optimising k-means clustering results with standard software packages," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 969-973, June.
    3. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    4. Douglas Steinley & Michael J. Brusco, 2007. "Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 99-121, June.
    5. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    6. Turner, Heather & Bailey, Trevor & Krzanowski, Wojtek, 2005. "Improved biclustering of microarray data demonstrated through systematic performance tests," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 235-254, February.
    7. Thomas Eckes & Peter Orlik, 1993. "An error variance approach to two-mode hierarchical clustering," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 51-74, January.
    8. Jan Schepers & Eva Ceulemans & Iven Mechelen, 2008. "Selecting Among Multi-Mode Partitioning Models of Different Complexities: A Comparison of Four Model Selection Criteria," Journal of Classification, Springer;The Classification Society, vol. 25(1), pages 67-85, June.
    9. Anil Chaturvedi & J. Carroll, 1994. "An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models," Journal of Classification, Springer;The Classification Society, vol. 11(2), pages 155-170, September.
    10. Even Mechelen & Paul Boeck, 1990. "Projection of a binary criterion into a model of hierarchical classes," Psychometrika, Springer;The Psychometric Society, vol. 55(4), pages 677-694, December.
    11. Michael Greenacre, 1988. "Clustering the rows and columns of a contingency table," Journal of Classification, Springer;The Classification Society, vol. 5(1), pages 39-51, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doove, Lisa L. & Wilderjans, Tom F. & Calcagnì, Antonio & Van Mechelen, Iven, 2017. "Deriving optimal data-analytic regimes from benchmarking studies," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 81-91.
    2. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    3. Michael Brusco & Patrick Doreian, 2015. "An Exact Algorithm for the Two-Mode KL-Means Partitioning Problem," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 481-515, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk Depril & Iven Mechelen & Tom Wilderjans, 2012. "Lowdimensional Additive Overlapping Clustering," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 297-320, October.
    2. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
    3. Joeri Hofmans & Eva Ceulemans & Douglas Steinley & Iven Mechelen, 2015. "On the Added Value of Bootstrap Analysis for K-Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 268-284, July.
    4. Schepers, Jan & van Mechelen, Iven & Ceulemans, Eva, 2006. "Three-mode partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1623-1642, December.
    5. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    6. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    7. Jan Schepers & Iven Mechelen & Eva Ceulemans, 2011. "The Real-Valued Model of Hierarchical Classes," Journal of Classification, Springer;The Classification Society, vol. 28(3), pages 363-389, October.
    8. Joost Rosmalen & Patrick Groenen & Javier Trejos & William Castillo, 2009. "Optimization Strategies for Two-Mode Partitioning," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 155-181, August.
    9. Mark Chiang & Boris Mirkin, 2010. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 3-40, March.
    10. Wedel, M. & Bijmolt, T.H.A., 1998. "Mixed Tree and Spatial Representation of Dissimilarity Judgments," Discussion Paper 1998-109, Tilburg University, Center for Economic Research.
    11. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    12. Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
    13. Wolf Dieter Heinbach & Stefanie Schröpfer, 2007. "Typisierung der Tarifvertragslandschaft. Eine Clusteranalyse der tarifvertraglichen Öffnungsklauseln (Identifying Types of Flexible Bargaining Agreements Using Cluster Analysis)," Diskussionspapiere aus dem Institut für Volkswirtschaftslehre der Universität Hohenheim 286/2007, Department of Economics, University of Hohenheim, Germany.
    14. Hossein Zare & Mostafa Kaveh & Arkady Khodursky, 2011. "Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-7, August.
    15. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    16. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    17. Gianluigi Migliavacca & Marco Rossi & Dario Siface & Matteo Marzoli & Hakan Ergun & Raúl Rodríguez-Sánchez & Maxime Hanot & Guillaume Leclerq & Nuno Amaro & Aleksandr Egorov & Jawana Gabrielski & Björ, 2021. "The Innovative FlexPlan Grid-Planning Methodology: How Storage and Flexible Resources Could Help in De-Bottlenecking the European System," Energies, MDPI, vol. 14(4), pages 1-28, February.
    18. John Martin, 2014. "Spatial processes and Galois/concept lattices," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(2), pages 961-981, March.
    19. Aurore Lomet & Gérard Govaert & Yves Grandvalet, 2018. "Model selection for Gaussian latent block clustering with the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 489-508, September.
    20. Pieter Schoonees & Michel Velden & Patrick Groenen, 2015. "Constrained Dual Scaling for Detecting Response Styles in Categorical Data," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 968-994, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:30:y:2013:i:1:p:56-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.