IDEAS home Printed from https://ideas.repec.org/a/spr/infotm/v17y2016i1d10.1007_s10799-014-0209-x.html
   My bibliography  Save this article

A knowledge based freight management decision support system incorporating economies of scale: multimodal minimum cost flow optimization approach

Author

Listed:
  • Nam Seok Kim

    (Hanyang University)

  • Byungkyu Park

    (University of Virginia)

  • Kang-Dae Lee

    (Yonsei University)

Abstract

This study developed a framework incorporating economies of scale into the multimodal minimum cost flow problem. To properly account for the economies of scale observed in practice, we explicitly modelled economies of scale on quantity, distance and vehicle size in a given multimodal freight network. The proposed multimodal minimum cost flow problem formulation has concave equations due to economies of scale for quantity, non-linear equations due to economies of scale for both quantity and distance, and non-continuous equations due to the economies of scale for vehicle size. A genetic algorithm was applied to find acceptable route, mode, and vehicle size choices for the multimodal minimum cost flow problem. We demonstrated how the economies of scale influenced system (mode), route choices, and total cost under various demand/service capacity scenarios. Our results will lead into more realistic assessments of intermodal system by explicitly considering the three types of economies of scale.

Suggested Citation

  • Nam Seok Kim & Byungkyu Park & Kang-Dae Lee, 2016. "A knowledge based freight management decision support system incorporating economies of scale: multimodal minimum cost flow optimization approach," Information Technology and Management, Springer, vol. 17(1), pages 81-94, March.
  • Handle: RePEc:spr:infotm:v:17:y:2016:i:1:d:10.1007_s10799-014-0209-x
    DOI: 10.1007/s10799-014-0209-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10799-014-0209-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10799-014-0209-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nam Seok Kim & Bert Van Wee, 2009. "Assessment of CO 2 emissions for truck-only and rail-based intermodal freight systems in Europe," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(4), pages 313-333, June.
    2. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    3. Fredrik Bärthel & Johan Woxenius, 2004. "Developing intermodal transport for small flows over short distances," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 403-424, October.
    4. McCann, Philip, 2001. "A proof of the relationship between optimal vehicle size, haulage length and the structure of distance-transport costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 671-693, September.
    5. Janic, Milan, 2008. "An assessment of the performance of the European long intermodal freight trains (LIFTS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1326-1339, December.
    6. Yvonne Bontekoning & Hugo Priemus, 2004. "Breakthrough innovations in intermodal freight transport," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 335-345, October.
    7. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    8. Kreutzberger, Ekki D., 2008. "Distance and time in intermodal goods transport networks in Europe: A generic approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 973-993, August.
    9. O'Kelly, M. E. & Bryan, D. L., 1998. "Hub location with flow economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 605-616, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Nam Seok & Van Wee, Bert, 2011. "The relative importance of factors that influence the break-even distance of intermodal freight transport systems," Journal of Transport Geography, Elsevier, vol. 19(4), pages 859-875.
    2. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    3. Chen, Hong & Cullinane, Kevin & Liu, Nan, 2017. "Developing a model for measuring the resilience of a port-hinterland container transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 282-301.
    4. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    5. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Hüseyin Güden, 2021. "New complexity results for the p-hub median problem," Annals of Operations Research, Springer, vol. 298(1), pages 229-247, March.
    7. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    8. Kumar, Aalok & Anbanandam, Ramesh, 2020. "Evaluating the interrelationships among inhibitors to intermodal railroad freight transport in emerging economies: A multi-stakeholder perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 559-581.
    9. Meisel, Frank & Kirschstein, Thomas & Bierwirth, Christian, 2013. "Integrated production and intermodal transportation planning in large scale production–distribution-networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 62-78.
    10. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    11. Milad Keshvari Fard & Laurent Alfandari, 2018. "Trade-offs between the Stepwise Cost Function and its Linear Approximation for the Modular Hub Location Problem," Working Papers hal-01821280, HAL.
    12. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    13. Milad , Keshvari Fard & Laurent, Alfandari, 2018. "Trade-offs between the Stepwise Cost Function and its Linear Approximation for the Modular Hub Location Problem," ESSEC Working Papers WP1805, ESSEC Research Center, ESSEC Business School.
    14. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    15. Jason Monios & Gordon Wilmsmeier, 2014. "The Impact of Container Type Diversification on Regional British Port Development Strategies," Transport Reviews, Taylor & Francis Journals, vol. 34(5), pages 583-606, September.
    16. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    17. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    18. Milorad Vidović & Slobodan Zečević & Milorad Kilibarda & Jelena Vlajić & Nenad Bjelić & Snežana Tadić, 2011. "The p-hub Model with Hub-catchment Areas, Existing Hubs, and Simulation: A Case Study of Serbian Intermodal Terminals," Networks and Spatial Economics, Springer, vol. 11(2), pages 295-314, June.
    19. Yaman, Hande & Kara, Bahar Y. & Tansel, Barbaros Ç., 2007. "The latest arrival hub location problem for cargo delivery systems with stopovers," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 906-919, October.
    20. Ishfaq, Rafay & Sox, Charles R., 2011. "Hub location-allocation in intermodal logistic networks," European Journal of Operational Research, Elsevier, vol. 210(2), pages 213-230, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infotm:v:17:y:2016:i:1:d:10.1007_s10799-014-0209-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.