IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v27y2004i5p403-424.html
   My bibliography  Save this article

Developing intermodal transport for small flows over short distances

Author

Listed:
  • Fredrik Bärthel
  • Johan Woxenius

Abstract

Intermodal road-rail freight transport works best within markets with relatively large flows occurring over long distances, which corresponds poorly to the current demand for transport in the European Union. The purpose of this paper is to compare the capabilities of conventional European intermodal transport, with special reference to the competitiveness in markets with small flows over short distances, and to explore innovative concepts. Using a technological systems approach, key functions are identified as being the inducement and blocking mechanisms that affect the development and diffusion path of this 'small flows over short distances' (SFSD) system, providing a tool for empirical delineation of the system. These concepts are illustrated and analysed through a case study of the Swedish development project Light-combi. The results show that market and financial uncertainties, insufficient network connectivity and policies favouring the existing technology paradigm, severely hamper the development and diffusion of SFSD systems.

Suggested Citation

  • Fredrik Bärthel & Johan Woxenius, 2004. "Developing intermodal transport for small flows over short distances," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 403-424, October.
  • Handle: RePEc:taf:transp:v:27:y:2004:i:5:p:403-424
    DOI: 10.1080/0308106042000287586
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0308106042000287586
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0308106042000287586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nam Seok Kim & Byungkyu Park & Kang-Dae Lee, 2016. "A knowledge based freight management decision support system incorporating economies of scale: multimodal minimum cost flow optimization approach," Information Technology and Management, Springer, vol. 17(1), pages 81-94, March.
    2. Mohammed Mojahid Hossain Chowdhury & Ziaul Haque Munim, 2023. "Dry port location selection using a fuzzy AHP-BWM-PROMETHEE approach," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(2), pages 301-329, June.
    3. Lu, Changxiang & Ye, Yong & Fang, Yongjun & Fang, Jiaqi, 2023. "An optimal control theory approach for freight structure path evolution post-COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    4. Lupi, Marino & Farina, Alessandro & Orsi, Denise & Pratelli, Antonio, 2017. "The capability of Motorways of the Sea of being competitive against road transport. The case of the Italian mainland and Sicily," Journal of Transport Geography, Elsevier, vol. 58(C), pages 9-21.
    5. Jason Monios & Gordon Wilmsmeier, 2014. "The Impact of Container Type Diversification on Regional British Port Development Strategies," Transport Reviews, Taylor & Francis Journals, vol. 34(5), pages 583-606, September.
    6. Guerrero, David & Niérat, Patrick & Thill, Jean-Claude, 2023. "Connecting short and long distance perspectives in freight transportation: Introduction to a special issue," Journal of Transport Geography, Elsevier, vol. 106(C).
    7. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    8. Chen, Hong & Cullinane, Kevin & Liu, Nan, 2017. "Developing a model for measuring the resilience of a port-hinterland container transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 282-301.
    9. John Gunnar Carlsson & Fan Jia, 2013. "Euclidean Hub-and-Spoke Networks," Operations Research, INFORMS, vol. 61(6), pages 1360-1382, December.
    10. Lehtinen, Jarkko & Bask, Anu H., 2012. "Analysis of business models for potential 3Mode transport corridor," Journal of Transport Geography, Elsevier, vol. 22(C), pages 96-108.
    11. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    12. Kumar, Aalok & Anbanandam, Ramesh, 2020. "Evaluating the interrelationships among inhibitors to intermodal railroad freight transport in emerging economies: A multi-stakeholder perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 559-581.
    13. Woxenius, Johan, 2007. "Alternative transport network designs and their implications for intermodal transhipment technologies," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 35, pages 27-45.
    14. Sandberg-Hanssen, Thor-Erik & Mathisen, Terje Andreas, 2011. "Factors facilitating intermodal transport of perishable goods - Transport purchaser’s viewpoint," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 75-89.
    15. Kim, Nam Seok & Van Wee, Bert, 2011. "The relative importance of factors that influence the break-even distance of intermodal freight transport systems," Journal of Transport Geography, Elsevier, vol. 19(4), pages 859-875.
    16. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    17. Cavallaro, Federico & Nocera, Silvio & Sommacal, Giulia, 2021. "Appropriateness of the “small-scale corridor terminals” scheme for rail-road combined transport: Evidence from the Brenner axis," Research in Transportation Economics, Elsevier, vol. 88(C).
    18. Monios, Jason & Bergqvist, Rickard, 2019. "The transport geography of electric and autonomous vehicles in road freight networks," Journal of Transport Geography, Elsevier, vol. 80(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:27:y:2004:i:5:p:403-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.