IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v24y2022i1d10.1007_s10796-021-10141-9.html
   My bibliography  Save this article

Coalitional Strategies for Efficient Individual Prediction Explanation

Author

Listed:
  • Gabriel Ferrettini

    (Université de Toulouse-Capitole, IRIT, (CNRS/UMR 5505))

  • Elodie Escriva

    (Kaduceo)

  • Julien Aligon

    (Université de Toulouse-Capitole, IRIT, (CNRS/UMR 5505))

  • Jean-Baptiste Excoffier

    (Kaduceo)

  • Chantal Soulé-Dupuy

    (Université de Toulouse-Capitole, IRIT, (CNRS/UMR 5505))

Abstract

As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named coalitions- influencing a prediction and compares them with the literature. Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation (SHAP). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.

Suggested Citation

  • Gabriel Ferrettini & Elodie Escriva & Julien Aligon & Jean-Baptiste Excoffier & Chantal Soulé-Dupuy, 2022. "Coalitional Strategies for Efficient Individual Prediction Explanation," Information Systems Frontiers, Springer, vol. 24(1), pages 49-75, February.
  • Handle: RePEc:spr:infosf:v:24:y:2022:i:1:d:10.1007_s10796-021-10141-9
    DOI: 10.1007/s10796-021-10141-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10141-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10141-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Meyer Lauritsen & Mads Kristensen & Mathias Vassard Olsen & Morten Skaarup Larsen & Katrine Meyer Lauritsen & Marianne Johansson Jørgensen & Jeppe Lange & Bo Thiesson, 2020. "Explainable artificial intelligence model to predict acute critical illness from electronic health records," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
    3. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jérôme Darmont & Boris Novikov & Robert Wrembel & Ladjel Bellatreche, 2022. "Advances on Data Management and Information Systems," Information Systems Frontiers, Springer, vol. 24(1), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelin Ayranci & Phung Lai & Nhathai Phan & Han Hu & Alexander Kolinowski & David Newman & Deijing Dou, 2022. "OnML: an ontology-based approach for interpretable machine learning," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 770-793, August.
    2. James V. Hansen, 2021. "Coalition Feature Interpretation and Attribution in Algorithmic Trading Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 849-866, October.
    3. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Pera, Rebecca & Viglia, Giampaolo & Furlan, Roberto, 2016. "Who Am I? How Compelling Self-storytelling Builds Digital Personal Reputation," Journal of Interactive Marketing, Elsevier, vol. 35(C), pages 44-55.
    6. Stan Lipovetsky, 2021. "Predictor Analysis in Group Decision Making," Stats, MDPI, vol. 4(1), pages 1-14, February.
    7. Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Emrah Arbak, 2017. "Identifying the provisioning policies of Belgian banks," Working Paper Research 326, National Bank of Belgium.
    9. Viglia, Giampaolo & Abrate, Graziano, 2017. "When distinction does not pay off - Investigating the determinants of European agritourism prices," Journal of Business Research, Elsevier, vol. 80(C), pages 45-52.
    10. Xingwei Hu, 2020. "A theory of dichotomous valuation with applications to variable selection," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1075-1099, November.
    11. Dmitry Sharapov & Paul Kattuman & Diego Rodriguez & F. Javier Velazquez, 2021. "Using the SHAPLEY value approach to variance decomposition in strategy research: Diversification, internationalization, and corporate group effects on affiliate profitability," Strategic Management Journal, Wiley Blackwell, vol. 42(3), pages 608-623, March.
    12. Kevin Fauvel & Tao Lin & Véronique Masson & Élisa Fromont & Alexandre Termier, 2021. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification," Mathematics, MDPI, vol. 9(23), pages 1-19, December.
    13. Xingwei Hu, 2018. "A Theory of Dichotomous Valuation with Applications to Variable Selection," Papers 1808.00131, arXiv.org, revised Mar 2020.
    14. Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
    15. Filotto, Umberto & Caratelli, Massimo & Fornezza, Fabrizio, 2021. "Shaping the digital transformation of the retail banking industry. Empirical evidence from Italy," European Management Journal, Elsevier, vol. 39(3), pages 366-375.
    16. Parmar, Janak & Das, Pritikana & Dave, Sanjaykumar M., 2021. "A machine learning approach for modelling parking duration in urban land-use," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    17. Elena Pokryshevskaya & Evgeny Antipov, 2013. "Importance-performance analysis for internet stores: a system based on publicly available panel data," HSE Working papers WP BRP 08/MAN/2013, National Research University Higher School of Economics.
    18. Sherwan Mohammed Najm & Imre Paniti, 2023. "Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 331-367, January.
    19. Eranga M. Wimalasiri & Ebrahim Jahanshiri & Tengku Adhwa Syaherah Tengku Mohd Suhairi & Hasika Udayangani & Ranjith B. Mapa & Asha S. Karunaratne & Lal P. Vidhanarachchi & Sayed N. Azam-Ali, 2020. "Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    20. Khoa Tran & Hai-Canh Vu & Lam Pham & Nassim Boudaoud & Ho-Si-Hung Nguyen, 2024. "Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines," Mathematics, MDPI, vol. 12(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:24:y:2022:i:1:d:10.1007_s10796-021-10141-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.