Coalitional Strategies for Efficient Individual Prediction Explanation
Author
Abstract
Suggested Citation
DOI: 10.1007/s10796-021-10141-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
- Simon Meyer Lauritsen & Mads Kristensen & Mathias Vassard Olsen & Morten Skaarup Larsen & Katrine Meyer Lauritsen & Marianne Johansson Jørgensen & Jeppe Lange & Bo Thiesson, 2020. "Explainable artificial intelligence model to predict acute critical illness from electronic health records," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jérôme Darmont & Boris Novikov & Robert Wrembel & Ladjel Bellatreche, 2022. "Advances on Data Management and Information Systems," Information Systems Frontiers, Springer, vol. 24(1), pages 1-10, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pelin Ayranci & Phung Lai & Nhathai Phan & Han Hu & Alexander Kolinowski & David Newman & Deijing Dou, 2022. "OnML: an ontology-based approach for interpretable machine learning," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 770-793, August.
- Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- James V. Hansen, 2021. "Coalition Feature Interpretation and Attribution in Algorithmic Trading Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 849-866, October.
- Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Pera, Rebecca & Viglia, Giampaolo & Furlan, Roberto, 2016. "Who Am I? How Compelling Self-storytelling Builds Digital Personal Reputation," Journal of Interactive Marketing, Elsevier, vol. 35(C), pages 44-55.
- Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Emrah Arbak, 2017. "Identifying the provisioning policies of Belgian banks," Working Paper Research 326, National Bank of Belgium.
- Xingwei Hu, 2020.
"A theory of dichotomous valuation with applications to variable selection,"
Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1075-1099, November.
- Hu, Xingwei, 2017. "A Theory of Dichotomous Valuation with Applications to Variable Selection," MPRA Paper 80457, University Library of Munich, Germany.
- Dmitry Sharapov & Paul Kattuman & Diego Rodriguez & F. Javier Velazquez, 2021. "Using the SHAPLEY value approach to variance decomposition in strategy research: Diversification, internationalization, and corporate group effects on affiliate profitability," Strategic Management Journal, Wiley Blackwell, vol. 42(3), pages 608-623, March.
- Kevin Fauvel & Tao Lin & Véronique Masson & Élisa Fromont & Alexandre Termier, 2021. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification," Mathematics, MDPI, vol. 9(23), pages 1-19, December.
- Parmar, Janak & Das, Pritikana & Dave, Sanjaykumar M., 2021. "A machine learning approach for modelling parking duration in urban land-use," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
- Elena Pokryshevskaya & Evgeny Antipov, 2013. "Importance-performance analysis for internet stores: a system based on publicly available panel data," HSE Working papers WP BRP 08/MAN/2013, National Research University Higher School of Economics.
- Sherwan Mohammed Najm & Imre Paniti, 2023. "Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 331-367, January.
- Khoa Tran & Hai-Canh Vu & Lam Pham & Nassim Boudaoud & Ho-Si-Hung Nguyen, 2024. "Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
- Davazdahemami, Behrooz & Kalgotra, Pankush & Zolbanin, Hamed M. & Delen, Dursun, 2023. "A developer-oriented recommender model for the app store: A predictive network analytics approach," Journal of Business Research, Elsevier, vol. 158(C).
- Kunal Pattanayak & Vikram Krishnamurthy, 2021. "Rationally Inattentive Utility Maximization for Interpretable Deep Image Classification," Papers 2102.04594, arXiv.org, revised Jul 2021.
- Mark Gromowski & Michael Siebers & Ute Schmid, 2020. "A process framework for inducing and explaining Datalog theories," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 821-835, December.
- Riccardo Colini-Baldeschi & Marco Scarsini & Stefano Vaccari, 2018. "Variance Allocation and Shapley Value," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 919-933, September.
- Haque, AKM Bahalul & Islam, A.K.M. Najmul & Mikalef, Patrick, 2023. "Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
- Ruiqiao Bai & Jacqueline C. K. Lam & Victor O. K. Li, 2023. "What dictates income in New York City? SHAP analysis of income estimation based on Socio-economic and Spatial Information Gaussian Processes (SSIG)," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
More about this item
Keywords
Data analysis; Machine learning; Interpretability; Explainable Artificial Intelligence (XAI); Prediction explanation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:24:y:2022:i:1:d:10.1007_s10796-021-10141-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.