IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i1d10.1007_s10878-022-00856-z.html
   My bibliography  Save this article

OnML: an ontology-based approach for interpretable machine learning

Author

Listed:
  • Pelin Ayranci

    (New Jersey Institute of Technology)

  • Phung Lai

    (New Jersey Institute of Technology)

  • Nhathai Phan

    (New Jersey Institute of Technology)

  • Han Hu

    (New Jersey Institute of Technology)

  • Alexander Kolinowski

    (Wells Fargo)

  • David Newman

    (Wells Fargo)

  • Deijing Dou

    (University of Oregon)

Abstract

In this paper, we introduce a novel interpreting framework that learns an interpretable model based on an ontology-based sampling technique to explain agnostic prediction models. Different from existing approaches, our interpretable algorithm considers contextual correlation among words, described in domain knowledge ontologies, to generate semantic explanations. To narrow down the search space for explanations, which is exponentially large given long and complicated text data, we design a learnable anchor algorithm to better extract local and domain knowledge-oriented explanations. A set of regulations is further introduced, combining learned interpretable representations with anchors and information extraction to generate comprehensible semantic explanations. To carry out an extensive experiment, we first develop a drug abuse ontology (DAO) on a drug abuse dataset on the Twittersphere, and a consumer complaint ontology (ConsO) on a consumer complaint dataset, especially for interpretable ML. Our experimental results show that our approach generates more precise and more insightful explanations compared with a variety of baseline approaches.

Suggested Citation

  • Pelin Ayranci & Phung Lai & Nhathai Phan & Han Hu & Alexander Kolinowski & David Newman & Deijing Dou, 2022. "OnML: an ontology-based approach for interpretable machine learning," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 770-793, August.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-022-00856-z
    DOI: 10.1007/s10878-022-00856-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00856-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00856-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    2. Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
    3. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Ferrettini & Elodie Escriva & Julien Aligon & Jean-Baptiste Excoffier & Chantal Soulé-Dupuy, 2022. "Coalitional Strategies for Efficient Individual Prediction Explanation," Information Systems Frontiers, Springer, vol. 24(1), pages 49-75, February.
    2. James V. Hansen, 2021. "Coalition Feature Interpretation and Attribution in Algorithmic Trading Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 849-866, October.
    3. Lara Marie Demajo & Vince Vella & Alexiei Dingli, 2020. "Explainable AI for Interpretable Credit Scoring," Papers 2012.03749, arXiv.org.
    4. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
    6. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    7. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    8. Borgonovo, Emanuele & Plischke, Elmar & Rabitti, Giovanni, 2024. "The many Shapley values for explainable artificial intelligence: A sensitivity analysis perspective," European Journal of Operational Research, Elsevier, vol. 318(3), pages 911-926.
    9. Pera, Rebecca & Viglia, Giampaolo & Furlan, Roberto, 2016. "Who Am I? How Compelling Self-storytelling Builds Digital Personal Reputation," Journal of Interactive Marketing, Elsevier, vol. 35(C), pages 44-55.
    10. Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.
    11. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    12. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    13. Stan Lipovetsky, 2021. "Predictor Analysis in Group Decision Making," Stats, MDPI, vol. 4(1), pages 1-14, February.
    14. Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Emrah Arbak, 2017. "Identifying the provisioning policies of Belgian banks," Working Paper Research 326, National Bank of Belgium.
    16. Viglia, Giampaolo & Abrate, Graziano, 2017. "When distinction does not pay off - Investigating the determinants of European agritourism prices," Journal of Business Research, Elsevier, vol. 80(C), pages 45-52.
    17. Xingwei Hu, 2020. "A theory of dichotomous valuation with applications to variable selection," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1075-1099, November.
    18. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    19. Berkin, Anil & Aerts, Walter & Van Caneghem, Tom, 2023. "Feasibility analysis of machine learning for performance-related attributional statements," International Journal of Accounting Information Systems, Elsevier, vol. 48(C).
    20. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-022-00856-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.