IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v23y2021i3d10.1007_s10796-020-09981-8.html
   My bibliography  Save this article

Leveraging Image-Processing Techniques for Empirical Research: Feasibility and Reliability in Online Shopping Context

Author

Listed:
  • Mengyue Wang

    (GoldMining Quant (Shenzhen) Technology Co Ltd)

  • Xin Li

    (City University of Hong Kong)

  • Patrick Y. K. Chau

    (University of Nottingham Ningbo China)

Abstract

Photos play a critical role in online shopping. To examine their impact on consumers, most previous studies rely on human assessments to develop measures for photos. Such an approach limits the number of dimensions and samples that can be investigated in one study. This study exploits image-processing techniques to tackle this challenge. We develop a framework and differentiate two types of computer-generated measures, aggregative and decompositive measures, which may be used in different ways in empirical research. We review the major image-processing technologies that have potential to be used in consumer behavior research. To showcase the feasibility of the framework, we conduct an example study on product photos’ impact on consumer click-through. Moreover, we conduct a simulation to investigate the robustness of the framework under the attack of image-processing algorithm errors. We find that image-processing techniques with 90~95% accuracy will be sufficient for empirical research.

Suggested Citation

  • Mengyue Wang & Xin Li & Patrick Y. K. Chau, 2021. "Leveraging Image-Processing Techniques for Empirical Research: Feasibility and Reliability in Online Shopping Context," Information Systems Frontiers, Springer, vol. 23(3), pages 607-626, June.
  • Handle: RePEc:spr:infosf:v:23:y:2021:i:3:d:10.1007_s10796-020-09981-8
    DOI: 10.1007/s10796-020-09981-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-020-09981-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-020-09981-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Hun Shin & Sung-Byung Yang & Kichan Nam & Chulmo Koo, 2017. "Conceptual foundations of a landmark personality scale based on a destination personality scale: Text mining of online reviews," Information Systems Frontiers, Springer, vol. 19(4), pages 743-752, August.
    2. McMANUS, I. C., 2005. "Symmetry and asymmetry in aesthetics and the arts," European Review, Cambridge University Press, vol. 13(S2), pages 157-180, October.
    3. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    4. Li Xiao & Min Ding, 2014. "Just the Faces: Exploring the Effects of Facial Features in Print Advertising," Marketing Science, INFORMS, vol. 33(3), pages 338-352, May.
    5. Wei-Lun Chang & Yi-Pei Chen, 2019. "Way too sentimental? a credible model for online reviews," Information Systems Frontiers, Springer, vol. 21(2), pages 453-468, April.
    6. Gregory Lewis, 2011. "Asymmetric Information, Adverse Selection and Online Disclosure: The Case of eBay Motors," American Economic Review, American Economic Association, vol. 101(4), pages 1535-1546, June.
    7. Xiangbin Yan & Jing Wang & Michael Chau, 2015. "Customer revisit intention to restaurants: Evidence from online reviews," Information Systems Frontiers, Springer, vol. 17(3), pages 645-657, June.
    8. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    9. S. P. Faustina Joan & S. Valli, 0. "An enhanced text detection technique for the visually impaired to read text," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    10. Ludovico Boratto & Salvatore Carta & Andreas Kaltenbrunner & Matteo Manca, 2018. "Guest Editorial: Behavioral-Data Mining in Information Systems and the Big Data Era," Information Systems Frontiers, Springer, vol. 20(6), pages 1153-1156, December.
    11. Harikesh Nair & Pradeep Chintagunta & Jean-Pierre Dubé, 2004. "Empirical Analysis of Indirect Network Effects in the Market for Personal Digital Assistants," Quantitative Marketing and Economics (QME), Springer, vol. 2(1), pages 23-58, March.
    12. Elvira Ismagilova & Emma L. Slade & Nripendra P. Rana & Yogesh K. Dwivedi, 0. "The Effect of Electronic Word of Mouth Communications on Intention to Buy: A Meta-Analysis," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    13. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    14. I. Robert Chiang & Manuel A. Nunez, 2007. "Improving Web-Catalog Design for Easy Product Search," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 510-519, November.
    15. Jianxin Liao & Di Yang & Tonghong Li & Jingyu Wang & Qi Qi & Xiaomin Zhu, 2014. "A scalable approach for content based image retrieval in cloud datacenter," Information Systems Frontiers, Springer, vol. 16(1), pages 129-141, March.
    16. Wu, Kewen & Vassileva, Julita & Zhao, Yuxiang & Noorian, Zeinab & Waldner, Wesley & Adaji, Ifeoma, 2016. "Complexity or simplicity? Designing product pictures for advertising in online marketplaces," Journal of Retailing and Consumer Services, Elsevier, vol. 28(C), pages 17-27.
    17. Seung-Hun Shin & Sung-Byung Yang & Kichan Nam & Chulmo Koo, 0. "Conceptual foundations of a landmark personality scale based on a destination personality scale: Text mining of online reviews," Information Systems Frontiers, Springer, vol. 0, pages 1-10.
    18. Luvai Motiwalla & Amit V. Deokar & Surendra Sarnikar & Angelika Dimoka, 2019. "Leveraging Data Analytics for Behavioral Research," Information Systems Frontiers, Springer, vol. 21(4), pages 735-742, August.
    19. Jonathan W. Palmer, 2002. "Web Site Usability, Design, and Performance Metrics," Information Systems Research, INFORMS, vol. 13(2), pages 151-167, June.
    20. D. Veena Parboteeah & Joseph S. Valacich & John D. Wells, 2009. "The Influence of Website Characteristics on a Consumer's Urge to Buy Impulsively," Information Systems Research, INFORMS, vol. 20(1), pages 60-78, March.
    21. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    22. Lixin Shen & Hong Wang & Li Da Xu & Xue Ma & Sohail Chaudhry & Wu He, 2016. "Identity management based on PCA and SVM," Information Systems Frontiers, Springer, vol. 18(4), pages 711-716, August.
    23. S. P. Faustina Joan & S. Valli, 2017. "An enhanced text detection technique for the visually impaired to read text," Information Systems Frontiers, Springer, vol. 19(5), pages 1039-1056, October.
    24. Mengyue Wang & Xin Li, 2017. "Effects of the aesthetic design of icons on app downloads: evidence from an android market," Electronic Commerce Research, Springer, vol. 17(1), pages 83-102, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Guan & Yong Tan & Qiang Wei & Guoqing Chen, 2023. "When Images Backfire: The Effect of Customer-Generated Images on Product Rating Dynamics," Information Systems Research, INFORMS, vol. 34(4), pages 1641-1663, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    2. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    3. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    4. Yuqian Xu & Mor Armony & Anindya Ghose, 2021. "The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation," Management Science, INFORMS, vol. 67(12), pages 7344-7361, December.
    5. Supriyo Mandal & Abyayananda Maiti, 2022. "Network promoter score (NePS): An indicator of product sales in E-commerce retailing sector," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1327-1349, September.
    6. Belleflamme,Paul & Peitz,Martin, 2015. "Industrial Organization," Cambridge Books, Cambridge University Press, number 9781107687899, October.
    7. Navid Aghakhani & Onook Oh & Dawn G. Gregg & Jahangir Karimi, 0. "Online Review Consistency Matters: An Elaboration Likelihood Model Perspective," Information Systems Frontiers, Springer, vol. 0, pages 1-15.
    8. Mochen Yang & Gediminas Adomavicius & Gordon Burtch & Yuqing Rena, 2018. "Mind the Gap: Accounting for Measurement Error and Misclassification in Variables Generated via Data Mining," Information Systems Research, INFORMS, vol. 29(1), pages 4-24, March.
    9. Navid Aghakhani & Onook Oh & Dawn G. Gregg & Jahangir Karimi, 2021. "Online Review Consistency Matters: An Elaboration Likelihood Model Perspective," Information Systems Frontiers, Springer, vol. 23(5), pages 1287-1301, September.
    10. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    11. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2019. "Technology in the 21st century: New challenges and opportunities," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 321-335.
    12. Reo Song & Ho Kim & Gene Moo Lee & Sungha Jang, 2019. "Does Deceptive Marketing Pay? The Evolution of Consumer Sentiment Surrounding a Pseudo-Product-Harm Crisis," Journal of Business Ethics, Springer, vol. 158(3), pages 743-761, September.
    13. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    14. Inoue, Yuki & Tsujimoto, Masaharu, 2018. "New market development of platform ecosystems: A case study of the Nintendo Wii," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 235-253.
    15. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    16. James E. Prieger & Wei‐Min Hu, 2012. "Applications Barrier To Entry And Exclusive Vertical Contracts In Platform Markets," Economic Inquiry, Western Economic Association International, vol. 50(2), pages 435-452, April.
    17. Knittel Christopher R. & Stango Victor, 2008. "Incompatibility, Product Attributes and Consumer Welfare: Evidence from ATMs," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 8(1), pages 1-42, January.
    18. Yang Zhao & Yixuan Li & Ning Wang & Ruoxin Zhou & Xin (Robert) Luo, 2022. "A Meta-Analysis of Online Impulsive Buying and the Moderating Effect of Economic Development Level," Information Systems Frontiers, Springer, vol. 24(5), pages 1667-1688, October.
    19. Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
    20. Angela Aerry Choi & Daegon Cho & Dobin Yim & Jae Yun Moon & Wonseok Oh, 2019. "When Seeing Helps Believing: The Interactive Effects of Previews and Reviews on E-Book Purchases," Information Systems Research, INFORMS, vol. 30(4), pages 1164-1183, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:23:y:2021:i:3:d:10.1007_s10796-020-09981-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.