IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i1d10.1007_s10845-015-1089-6.html
   My bibliography  Save this article

Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function

Author

Listed:
  • Xueliang Zhou

    (Xi’an Jiaotong University)

  • Pingyu Jiang

    (Xi’an Jiaotong University)

  • Xianxiang Wang

    (Xi’an Jiaotong University)

Abstract

Accurate control chart patterns recognition (CCPR) plays an essential role in the implementation of control charts. However, it is a challenging problem since nonrandom control chart patterns (CCPs) are normally distorted by “common process variations”. In this paper, a novel method of CCPR by integrating fuzzy support vector machine (SVM) with hybrid kernel function and genetic algorithm (GA) is proposed. Firstly, two shape features and two statistical features that do not depend on the distribution parameters and number of samples are presented to explicitly describe the characteristics of CCPs. Then, a novel multiclass method based on fuzzy SVM with a hybrid kernel function is proposed. In this method, the influence of outliers on classification accuracy of SVM-based classifiers is weakened by assigning a degree of membership for every training sample. Meanwhile, a hybrid kernel function combining Gaussian kernel and polynomial kernel is adopted to further enhance the generalization ability of the classifiers. To solve the issue of features selection and parameters optimization, GA is used to simultaneously optimize the input features subsets and parameters of fuzzy SVM-based classifier. Finally, several simulation experiments and a real example are addressed to validate the feasibility and effectiveness of the proposed methodology. And the results of simulation experiments demonstrate that it can achieve excellent performance for CCPR and outperforms other approaches, such as learning vector quantization network, multi-layer perceptron network, probability neural network, fuzzy clustering and SVM, in term of recognition accuracy. The results of the practical cases manifest that the proposed method has application potential for solving the problem of control chart interpretation in real-world.

Suggested Citation

  • Xueliang Zhou & Pingyu Jiang & Xianxiang Wang, 2018. "Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 51-67, January.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1089-6
    DOI: 10.1007/s10845-015-1089-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1089-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1089-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Shichang & Lv, Jun, 2013. "Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes," International Journal of Production Economics, Elsevier, vol. 141(1), pages 377-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zan & Zhihao Liu & Hui Wang & Min Wang & Xiangsheng Gao, 2020. "Control chart pattern recognition using the convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 703-716, March.
    2. Pamela Chiñas-Sanchez & Ismael Lopez-Juarez & Jose Antonio Vazquez-Lopez & Jose Luis Navarro-Gonzalez & Aidee Hernandez-Lopez, 2021. "Out-of-Control Multivariate Patterns Recognition Using D 2 and SVM: A Study Case for GMAW," Mathematics, MDPI, vol. 9(5), pages 1-14, February.
    3. Ahmed Maged & Min Xie, 2023. "Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1941-1963, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Xue & MacKenzie, Cameron A., 2020. "Distinguishing between common cause variation and special cause variation in a manufacturing system: A simulation of decision making for different types of variation," International Journal of Production Economics, Elsevier, vol. 220(C).
    2. Iziy Azamsadat & Sadeghpour Gildeh Bahram & Monabbati Ehsan, 2017. "Comparison Between the Economic-Statistical Design of Double and Triple Sampling X¯\bar{X} Control Charts," Stochastics and Quality Control, De Gruyter, vol. 32(1), pages 49-61, June.
    3. Leoni, Roberto Campos & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2015. "The effect of the autocorrelation on the performance of the T2 chart," European Journal of Operational Research, Elsevier, vol. 247(1), pages 155-165.
    4. Xueliang Zhou & Pingyu Jiang, 2017. "Variation source identification for deep hole boring process of cutting-hard workpiece based on multi-source information fusion using evidence theory," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 255-270, February.
    5. Ketai He & Min Zhang & Ling Zuo & Theyab Alhwiti & Fadel M. Megahed, 2017. "Enhancing the monitoring of 3D scanned manufactured parts through projections and spatiotemporal control charts," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 899-911, April.
    6. Ho, Linda Lee & Aparisi, Francisco, 2016. "ATTRIVAR: Optimized control charts to monitor process mean with lower operational cost," International Journal of Production Economics, Elsevier, vol. 182(C), pages 472-483.
    7. Khoo, Michael B.C. & Teoh, W.L. & Castagliola, Philippe & Lee, M.H., 2013. "Optimal designs of the double sampling X¯ chart with estimated parameters," International Journal of Production Economics, Elsevier, vol. 144(1), pages 345-357.
    8. Lixin Shen & Hong Wang & Li Da Xu & Xue Ma & Sohail Chaudhry & Wu He, 2016. "Identity management based on PCA and SVM," Information Systems Frontiers, Springer, vol. 18(4), pages 711-716, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1089-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.