IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v32y2017i1p49-61n2.html
   My bibliography  Save this article

Comparison Between the Economic-Statistical Design of Double and Triple Sampling X¯\bar{X} Control Charts

Author

Listed:
  • Iziy Azamsadat

    (Department of Statistics, Ferdowsi University Of Mashhad (FUM), Mashhad, Iran)

  • Sadeghpour Gildeh Bahram

    (Department of Statistics, Ferdowsi University Of Mashhad (FUM), Mashhad, Iran)

  • Monabbati Ehsan

    (Department of Mathematics, Alzahra University, Tehran, Iran)

Abstract

Control charts have been established as major tools for quality control and improvement in industry. Therefore, it is always required to consider an appropriate design of a control chart from an economical point of view before using the chart. The economic design of a control chart refers to the determination of three optimal control chart parameters: sample size, the sampling interval, and the control limits coefficient. In this article, the double sampling (DS) X¯{\bar{X}} control chart is considered for the economic design using nonlinear mixed integer programming approach. The triple sampling (TS) X¯{\bar{X}} control charts are developed for economic design based on the results of solving the DS X¯{\bar{X}} chart design problems. In this model, we assume that the process must be shut down during the search for the assignable cause. Multiple sampling X¯{\bar{X}} charts can be designed for quick detection of a small shift in process. The results of the comparison between the economic-statistical design of DS and TS X¯{\bar{X}} control charts show that TS X¯{\bar{X}} control charts are more efficient in terms of minimizing the average sample size, but its expected average cost takes larger values.

Suggested Citation

  • Iziy Azamsadat & Sadeghpour Gildeh Bahram & Monabbati Ehsan, 2017. "Comparison Between the Economic-Statistical Design of Double and Triple Sampling X¯\bar{X} Control Charts," Stochastics and Quality Control, De Gruyter, vol. 32(1), pages 49-61, June.
  • Handle: RePEc:bpj:ecqcon:v:32:y:2017:i:1:p:49-61:n:2
    DOI: 10.1515/eqc-2017-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc-2017-0005
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc-2017-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Shabbir & Riaz, Muhammad & Abbasi, Saddam Akber & Lin, Zhengyan, 2013. "On monitoring process variability under double sampling scheme," International Journal of Production Economics, Elsevier, vol. 142(2), pages 388-400.
    2. Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2011. "Variable parameter and double sampling charts in the presence of correlation: The Markov chain approach," International Journal of Production Economics, Elsevier, vol. 130(2), pages 224-229, April.
    3. Torng, Chau-Chen & Lee, Pei-Hsi & Liao, Nai-Yi, 2009. "An economic-statistical design of double sampling control chart," International Journal of Production Economics, Elsevier, vol. 120(2), pages 495-500, August.
    4. Margaret R. Panagos & Russell G. Heikes & Douglas C. Montgomery, 1985. "Economic design of X¯ control charts for two manufacturing process models," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(4), pages 631-646, November.
    5. He, David & Grigoryan, Arsen, 2006. "Joint statistical design of double sampling and s charts," European Journal of Operational Research, Elsevier, vol. 168(1), pages 122-142, January.
    6. Zhang, Cai Wen & Xie, Min & Goh, Thong Ngee, 2008. "Economic design of cumulative count of conforming charts under inspection by samples," International Journal of Production Economics, Elsevier, vol. 111(1), pages 93-104, January.
    7. Wu, Zhang & Yang, Mei & Khoo, Michael B.C. & Castagliola, Philippe, 2011. "What are the best sample sizes for the Xbar and CUSUM charts?," International Journal of Production Economics, Elsevier, vol. 131(2), pages 650-662, June.
    8. Du, Shichang & Lv, Jun, 2013. "Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes," International Journal of Production Economics, Elsevier, vol. 141(1), pages 377-387.
    9. Chen, Yan-Kwang, 2004. "Economic design of control charts for non-normal data using variable sampling policy," International Journal of Production Economics, Elsevier, vol. 92(1), pages 61-74, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    2. Khoo, Michael B.C. & Teoh, W.L. & Castagliola, Philippe & Lee, M.H., 2013. "Optimal designs of the double sampling X¯ chart with estimated parameters," International Journal of Production Economics, Elsevier, vol. 144(1), pages 345-357.
    3. Torng, Chau-Chen & Lee, Pei-Hsi & Liao, Nai-Yi, 2009. "An economic-statistical design of double sampling control chart," International Journal of Production Economics, Elsevier, vol. 120(2), pages 495-500, August.
    4. Franco, Bruno Chaves & Celano, Giovanni & Castagliola, Philippe & Costa, Antonio Fernando Branco, 2014. "Economic design of Shewhart control charts for monitoring autocorrelated data with skip sampling strategies," International Journal of Production Economics, Elsevier, vol. 151(C), pages 121-130.
    5. Xiao, Xiao & Jiang, Wei & Luo, Jianwen, 2019. "Combining process and product information for quality improvement," International Journal of Production Economics, Elsevier, vol. 207(C), pages 130-143.
    6. Lee, Pei-Hsi, 2013. "Joint statistical design of X¯ and s charts with combined double sampling and variable sampling interval," European Journal of Operational Research, Elsevier, vol. 225(2), pages 285-297.
    7. Ho, Linda Lee & Aparisi, Francisco, 2016. "ATTRIVAR: Optimized control charts to monitor process mean with lower operational cost," International Journal of Production Economics, Elsevier, vol. 182(C), pages 472-483.
    8. Ho, Linda Lee & Trindade, Anderson Laécio Galindo, 2009. "Economic design of an X chart for short-run production," International Journal of Production Economics, Elsevier, vol. 120(2), pages 613-624, August.
    9. Wu, Zhang & Yang, Mei & Khoo, Michael B.C. & Castagliola, Philippe, 2011. "What are the best sample sizes for the Xbar and CUSUM charts?," International Journal of Production Economics, Elsevier, vol. 131(2), pages 650-662, June.
    10. Ou, Yanjing & Wu, Zhang & Tsung, Fugee, 2012. "A comparison study of effectiveness and robustness of control charts for monitoring process mean," International Journal of Production Economics, Elsevier, vol. 135(1), pages 479-490.
    11. Leoni, Roberto Campos & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2015. "The effect of the autocorrelation on the performance of the T2 chart," European Journal of Operational Research, Elsevier, vol. 247(1), pages 155-165.
    12. Zhang, Min & Nie, Guohua & He, Zhen, 2014. "Performance of cumulative count of conforming chart of variable sampling intervals with estimated control limits," International Journal of Production Economics, Elsevier, vol. 150(C), pages 114-124.
    13. Du, Shichang & Lv, Jun, 2013. "Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes," International Journal of Production Economics, Elsevier, vol. 141(1), pages 377-387.
    14. Chen, Yan-Kwang & Hsieh, Kun-Lin, 2007. "Hotelling's T2 charts with variable sample size and control limit," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1251-1262, November.
    15. Lee, Pei-Hsi & Torng, Chau-Chen & Liao, Li-Fang, 2012. "An economic design of combined double sampling and variable sampling interval X¯ control chart," International Journal of Production Economics, Elsevier, vol. 138(1), pages 102-106.
    16. Lee, Pei-Hsi, 2011. "Adaptive R charts with variable parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 2003-2010, May.
    17. Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2011. "Variable parameter and double sampling charts in the presence of correlation: The Markov chain approach," International Journal of Production Economics, Elsevier, vol. 130(2), pages 224-229, April.
    18. Naderkhani, Farnoosh & Makis, Viliam, 2016. "Economic design of multivariate Bayesian control chart with two sampling intervals," International Journal of Production Economics, Elsevier, vol. 174(C), pages 29-42.
    19. Zhang, Cai Wen & Xie, Min & Goh, Thong Ngee, 2008. "Economic design of cumulative count of conforming charts under inspection by samples," International Journal of Production Economics, Elsevier, vol. 111(1), pages 93-104, January.
    20. Lei, Xue & MacKenzie, Cameron A., 2020. "Distinguishing between common cause variation and special cause variation in a manufacturing system: A simulation of decision making for different types of variation," International Journal of Production Economics, Elsevier, vol. 220(C).

    More about this item

    Keywords

    Panagos’s Cost Model; Economic Design;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:32:y:2017:i:1:p:49-61:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.