IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v42y2011i6d10.1007_s13226-011-0028-2.html
   My bibliography  Save this article

Random partitioning models arising from size-biased picking

Author

Listed:
  • M. Ghorbel

    (Université de Sfax
    Université de Paris 13)

Abstract

This work is a continuation of the paper [9], where a particular fragmentation process of a unit interval II, according to a β-size-biased picking procedure (β ∈ ℝ) is investigated. It results from the splitting process, the production of a random countable partition of unity together with another random partitioning of some random quantity Z > 0. For such partition models, several statistical questions are addressed among which: sampling formula from the random partition of I, correlation structure, partition function, weighted partition, Rényi’s, typical and size-biased fragments size.

Suggested Citation

  • M. Ghorbel, 2011. "Random partitioning models arising from size-biased picking," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(6), pages 443-473, December.
  • Handle: RePEc:spr:indpam:v:42:y:2011:i:6:d:10.1007_s13226-011-0028-2
    DOI: 10.1007/s13226-011-0028-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-011-0028-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-011-0028-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    2. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    3. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    4. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    5. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    6. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    7. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    8. Martínez-Ovando Juan Carlos & Walker Stephen G., 2011. "Time-series Modelling, Stationarity and Bayesian Nonparametric Methods," Working Papers 2011-08, Banco de México.
    9. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    10. Inés M. Varas & Jorge González & Fernando A. Quintana, 2020. "A Bayesian Nonparametric Latent Approach for Score Distributions in Test Equating," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 639-666, December.
    11. Stefano Tonellato, 2019. "Bayesian nonparametric clustering as a community detection problem," Working Papers 2019: 20, Department of Economics, University of Venice "Ca' Foscari".
    12. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    13. Antonio Lijoi & Igor Prunster, 2009. "Models beyond the Dirichlet process," Quaderni di Dipartimento 103, University of Pavia, Department of Economics and Quantitative Methods.
    14. Asim Ansari & Raghuram Iyengar, 2006. "Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 631-657, December.
    15. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    16. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    17. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    18. Liu Yang & Nandram Balgobin, 2022. "Sampling methods for the concentration parameter and discrete baseline of the Dirichlet Process," Statistics in Transition New Series, Statistics Poland, vol. 23(4), pages 21-36, December.
    19. Rodriguez, Abel & Wang, Ziwei & Kottas, Athanasios, 2014. "Assessing systematic risk in the S&P500 index between 2000 and 2011: A Bayesian nonparametric approach," Santa Cruz Department of Economics, Working Paper Series qt6dh099g2, Department of Economics, UC Santa Cruz.
    20. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:42:y:2011:i:6:d:10.1007_s13226-011-0028-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.