IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i4d10.1007_s13198-014-0324-4.html
   My bibliography  Save this article

Computational intelligence based models for prediction of elemental composition of solid biomass fuels from proximate analysis

Author

Listed:
  • Suhas B. Ghugare

    (CSIR-National Chemical Laboratory)

  • Shishir Tiwary

    (CSIR-National Chemical Laboratory
    CSIR-Central Institute of Mining and Fuel Research (CIMFR))

  • Sanjeev S. Tambe

    (CSIR-National Chemical Laboratory)

Abstract

Biomass is a renewable and sustainable source of “green” energy. The elemental composition comprising carbon (C), hydrogen (H) and oxygen (O) as major components, is an important measure of the biomass fuel’s energy content. Its knowledge is also valuable in: (a) computing material balance in a biomass-based process, (b) designing and operating biomass utilizing efficient and clean combustors, gasifiers and boilers, (c) fixing the quantity of oxidants required for biomass combustion/gasification, and (d) determining the volume and composition of the combustion/gasification gases. Obtaining the elemental composition of a biomass fuel via ultimate analysis is an expensive and time-consuming task. In comparison, proximate analysis that determines fixed carbon, ash, volatile matter and moisture content is a cruder characterization of the fuel and easier to perform. Thus, there exists a need for models possessing high accuracies for predicting the elemental composition of a solid biomass fuel from its proximate analysis constituents. Accordingly, this study utilizes three computational intelligence (CI) formalisms, namely, genetic programming, artificial neural networks and support vector regression, for developing nonlinear models for the prediction of C, H and O fractions of solid biomass fuels. A large database of 830 biomasses has been used in the stated model development. A comparison of the prediction accuracy and generalization performance of the nine CI-based models (three each for C, H and O) with that of the currently available linear models indicates that the CI-based models have consistently and significantly outperformed their linear counterparts. The models developed in this study have proved to be the best models for the prediction of elemental composition of solid biomass fuels from their proximate analyses.

Suggested Citation

  • Suhas B. Ghugare & Shishir Tiwary & Sanjeev S. Tambe, 2017. "Computational intelligence based models for prediction of elemental composition of solid biomass fuels from proximate analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2083-2096, December.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-014-0324-4
    DOI: 10.1007/s13198-014-0324-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-014-0324-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-014-0324-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Massulini Acosta & Anderson Levati Amoroso & Ângelo Márcio Oliveira Sant’Anna & Osiris Canciglieri Junior, 2022. "Predictive modeling in a steelmaking process using optimized relevance vector regression and support vector regression," Annals of Operations Research, Springer, vol. 316(2), pages 905-926, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miha Kovačič & Klemen Stopar & Robert Vertnik & Božidar Šarler, 2019. "Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A Pilot Study," Energies, MDPI, vol. 12(11), pages 1-13, June.
    2. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    3. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    4. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
    5. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
    6. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    7. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    8. Chun-Cheng Lin & Rou-Xuan He & Wan-Yu Liu, 2018. "Considering Multiple Factors to Forecast CO 2 Emissions: A Hybrid Multivariable Grey Forecasting and Genetic Programming Approach," Energies, MDPI, vol. 11(12), pages 1-25, December.
    9. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    10. Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
    11. Izadyar, Nima & Ghadamian, Hossein & Ong, Hwai Chyuan & moghadam, Zeinab & Tong, Chong Wen & Shamshirband, Shahaboddin, 2015. "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption," Energy, Elsevier, vol. 93(P2), pages 1558-1567.
    12. Song, Jiancai & Zhang, Liyi & Jiang, Qingling & Ma, Yunpeng & Zhang, Xinxin & Xue, Guixiang & Shen, Xingliang & Wu, Xiangdong, 2022. "Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model," Applied Energy, Elsevier, vol. 309(C).
    13. Emmanouil S. Rigas & Enrico H. Gerding & Sebastian Stein & Sarvapali D. Ramchurn & Nick Bassiliades, 2022. "Mechanism Design for Efficient Offline and Online Allocation of Electric Vehicles to Charging Stations," Energies, MDPI, vol. 15(5), pages 1-21, February.
    14. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
    15. Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
    16. Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
    17. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
    18. Xiao, Jin & Li, Yuxi & Xie, Ling & Liu, Dunhu & Huang, Jing, 2018. "A hybrid model based on selective ensemble for energy consumption forecasting in China," Energy, Elsevier, vol. 159(C), pages 534-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-014-0324-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.