IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i3d10.1007_s13198-016-0417-3.html
   My bibliography  Save this article

Application of improved unascertained mathematical model in security evaluation of civil airport

Author

Listed:
  • Jia-ni Zhao

    (Shanghai University of Engineering Science)

  • Li-na Shi

    (Shanghai University of Engineering Science)

  • Li Zhang

    (Shanghai University of Engineering Science)

Abstract

In view of the defects of the civil airport security evaluation and the uncertain factors in it, a new civil airport security comprehensive evaluation method was proposed based on the improved unascertained measure theory. The research shows that: Firstly, the unascertained functions meet the requirements of non-negativity, additivity and normalization, which are the most obvious differences between unascertained mathematical functions and fuzzy membership functions; the unascertained functions of different indicators could be different as well as the unascertained functions of the same index on different grades. Secondly, introducing the concept of entropy, which is based on objective data, greatly reduces the subjectivity of the weight. Thirdly, the credible degree theory is introduced to analyze the comprehensive measurement vector, the range of which is usually between 0.6 and 0.9. Finally, when comes to the security evaluation of multi-airports, if these airports’ security situation belong to one level, comprehensive safety score of each airport could be calculated according to the comprehensive measure vector, on the basis of which the security situation of each airport could be compared. The example shows that the method is simple and effective.This study provides a new way for the security evaluation of civil airport.

Suggested Citation

  • Jia-ni Zhao & Li-na Shi & Li Zhang, 2017. "Application of improved unascertained mathematical model in security evaluation of civil airport," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 1989-2000, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-016-0417-3
    DOI: 10.1007/s13198-016-0417-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0417-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0417-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamasi, Galileo & Demichela, Micaela, 2011. "Risk assessment techniques for civil aviation security," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 892-899.
    2. Oster, Clinton V. & Strong, John S. & Zorn, C. Kurt, 2013. "Analyzing aviation safety: Problems, challenges, opportunities," Research in Transportation Economics, Elsevier, vol. 43(1), pages 148-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chun-Nen & Liou, James J.H. & Lo, Huai-Wei & Chang, Fu-Jung, 2021. "Building an assessment model for measuring airport resilience," Journal of Air Transport Management, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Sun & Fangquan Yang & Peiwen Zhang & Yunxiang Zhao, 2023. "Flight Training Risk Identification and Assessment Based on the HHM-RFRM Model," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    2. Decker, Christopher & Chiambaretto, Paul, 2022. "Economic policy choices and trade-offs for Unmanned aircraft systems Traffic Management (UTM): Insights from Europe and the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 40-58.
    3. Ewa DUDEK & Karolina KRZYKOWSKA-PIOTROWSKA & Mirosław SIERGIEJCZYK, 2020. "Risk Management In (Air) Transport With Exemplary Risk Analysis Based On The Tolerability Matrix," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(2), pages 143-156, June.
    4. Skorupski, Jacek & Uchroński, Piotr, 2020. "Multi-criteria group decision-making approach to the modernization of hold baggage security screening system at an airport," Journal of Air Transport Management, Elsevier, vol. 87(C).
    5. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    6. Anders Pousette & Josefa Vega Matuszczyk & Kenneth Björk & Marianne Törner, 2021. "AERODROM security climate: development and validation of the aerodrome security climate questionnaire (ADSECQ)," Journal of Transportation Security, Springer, vol. 14(1), pages 19-39, June.
    7. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Chang, Chiung-Ting, 2017. "Risk factors associated with flying in adverse weather: From the passengers' point of view," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 68-75.
    9. Tüzün Tolga İnan & Neslihan Gökmen İnan, 2022. "The analysis of fatal aviation accidents more than 100 dead passengers: an application of machine learning," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1377-1395, December.
    10. Calabrese, Curtis G. & Molesworth, Brett R.C. & Hatfield, Julie & Slavich, Eve, 2022. "Effects of the Federal Aviation Administration's Compliance Program on aircraft incidents and accidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 304-319.
    11. Vatankhah, Sanaz, 2021. "Dose safety motivation mediate the effect of psychological contract of safety on flight attendants' safety performance outcomes?: A social exchange perspective," Journal of Air Transport Management, Elsevier, vol. 90(C).
    12. Fox, Sarah, 2014. "Safety and security: The influence of 9/11 to the EU framework for air carriers and aircraft operators," Research in Transportation Economics, Elsevier, vol. 45(C), pages 24-33.
    13. S. Towers & B. Amdouni & R. Cordova & K. Funderburk & C. Montalvo & M. Thakur & J. Velazquez-Molina & C. Castillo-Chavez, 2021. "The rising prevalence of weapons in unsafe arming configurations discovered in American airports," Journal of Transportation Security, Springer, vol. 14(1), pages 1-18, June.
    14. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.
    15. Arnold Barnett, 2020. "Aviation Safety: A Whole New World?," Transportation Science, INFORMS, vol. 54(1), pages 84-96, January.
    16. Skorupski, Jacek, 2015. "The risk of an air accident as a result of a serious incident of the hybrid type," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 37-52.
    17. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    18. Pérez-Granja, Ubay & Pérez-Sánchez, José María & Pérez-Rodríguez, Jorge V., 2024. "Assessing economic performance and aviation accidents using zero-inflated and over-dispersed panel data models," Journal of Air Transport Management, Elsevier, vol. 118(C).
    19. Wenquan Liu & Honghai Zhang & Zongbei Shi & Yufei Wang & Jing Chang & Jinpeng Zhang, 2023. "Risk Topics Discovery and Trend Analysis in Air Traffic Control Operations—Air Traffic Control Incident Reports from 2000 to 2022," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    20. Peng He & Ruishan Sun, 2022. "Research on Cross-Correlation, Co-Integration, and Causality Relationship between Civil Aviation Incident and Airline Capacity in China," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-016-0417-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.