IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i12p1637-1646.html
   My bibliography  Save this article

A methodology for throughput capacity analysis of a production facility considering environment condition

Author

Listed:
  • Barabadi, Abbas
  • Barabady, Javad
  • Markeset, Tore

Abstract

Throughput capacity of a production facility plays an important role in supporting managers and engineers in the decision making processes related to the design and optimization of a production plant. System throughput capacity is affected in complex ways by the reliability, maintainability, and capacity of its components. These in turn are considerably affected by operational environment such as ambient temperature, icing, dust, wind, etc. Therefore, in order to have an effective throughput capacity analysis (TCA), all influence factors (covariates) on these terms need to be identified; furthermore, their effect must be modeled and quantified by an appropriate statistical approach. The aim of this paper is to develop a methodology for throughput capacity analysis considering environment condition. A simple case study is used to demonstrate how the methodology can be applied in a real case.

Suggested Citation

  • Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "A methodology for throughput capacity analysis of a production facility considering environment condition," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1637-1646.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1637-1646
    DOI: 10.1016/j.ress.2011.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xueli & Barabady, Javad & Markeset, Tore, 2010. "An approach for prediction of petroleum production facility performance considering Arctic influence factors," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 837-846.
    2. Barabady, Javad & Kumar, Uday, 2008. "Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 647-653.
    3. Remenyte-Prescott, R. & Andrews, J.D. & Chung, P.W.H., 2010. "An efficient phased mission reliability analysis for autonomous vehicles," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 226-235.
    4. Distefano, Salvatore & Puliafito, Antonio, 2009. "Reliability and availability analysis of dependent–dynamic systems with DRBDs," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1381-1393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barabadi, Abbas & Tobias Gudmestad, Ove & Barabady, Javad, 2015. "RAMS data collection under Arctic conditions," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 92-99.
    2. Ali Nouri Gharahasanlou & Mohammad Ataei & Reza Khalokakaie & Abbas Barabadi & Vahid Einian, 2017. "Risk based maintenance strategy: a quantitative approach based on time-to-failure model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 602-611, September.
    3. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    4. Amin Moniri-Morad & Mohammad Pourgol-Mohammad & Hamid Aghababaei & Javad Sattarvand, 2019. "Reliability-based covariate analysis for complex systems in heterogeneous environment: Case study of mining equipment," Journal of Risk and Reliability, , vol. 233(4), pages 593-604, August.
    5. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    6. Masoud Naseri & Javad Barabady, 2016. "On RAM performance of production facilities operating under the Barents Sea harsh environmental conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 273-298, September.
    7. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Moniri-Morad & Mohammad Pourgol-Mohammad & Hamid Aghababaei & Javad Sattarvand, 2019. "Reliability-based covariate analysis for complex systems in heterogeneous environment: Case study of mining equipment," Journal of Risk and Reliability, , vol. 233(4), pages 593-604, August.
    2. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "Maintainability analysis considering time-dependent and time-independent covariates," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 210-217.
    3. Masoud Naseri & Javad Barabady, 2016. "On RAM performance of production facilities operating under the Barents Sea harsh environmental conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 273-298, September.
    4. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    5. BULUT, Merve & ÖZCAN, Evrencan, 2021. "A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    7. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    8. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Luo, Xu & Ge, Zhexue & Zhang, ShiGang & Yang, Yongmin, 2021. "A method for the maintainability evaluation at design stage using maintainability design attributes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    12. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    13. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    14. Jarosław Brodny & Magdalena Tutak, 2019. "Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study," Energies, MDPI, vol. 12(13), pages 1-15, June.
    15. Xing, Liudong & Shrestha, Akhilesh & Dai, Yuanshun, 2011. "Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1375-1385.
    16. Xing, Liudong & Levitin, Gregory, 2013. "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 145-153.
    17. Panagiotis H. Tsarouhas & George K. Fourlas, 2016. "Mission reliability estimation of mobile robot system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(2), pages 220-228, June.
    18. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    19. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    20. Kartick Bhushan & Somnath Chattopadhyaya & Shubham Sharma & Kamal Sharma & Changhe Li & Yanbin Zhang & Elsayed Mohamed Tag Eldin, 2022. "Analyzing Reliability and Maintainability of Crawler Dozer BD155 Transmission Failure Using Markov Method and Total Productive Maintenance: A Novel Case Study for Improvement Productivity," Sustainability, MDPI, vol. 14(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1637-1646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.