IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i9d10.1007_s13198-024-02475-9.html
   My bibliography  Save this article

The detection method of continuous outliers in complex network data streams based on C-LSTM

Author

Listed:
  • Zhinian Shu

    (Chaohu University)

  • Xiaorong Li

    (Chaohu University)

Abstract

To enhance the effective detection of abnormal points in complex network data flow, perform multi-dimensional dynamic detection, and establish a more stable and reliable data flow abnormal detection method, a continuous abnormal point detection method for complex network data flow based on C-LSTM is proposed. The features of continuous outliers in complex network data streams are extracted, and a data anomaly detection model is established according to the features. The input features of continuous outliers in complex network data streams are qualitatively and quantitatively transformed into multi-scale anomalies, and the outlier detection based on C-LSTM is realized. The experimental results show that the maximum sensitivity of the proposed method reaches 42%, and the average routing overhead is less than 24 Mb. Regardless of the data in any scenario, the detection accuracy is higher than 0.92, the recall is higher than 0.81, and the F1 value is higher than 0.62. Although there may be some misjudgments or omissions due to noise, the overall detection performance is good.

Suggested Citation

  • Zhinian Shu & Xiaorong Li, 2024. "The detection method of continuous outliers in complex network data streams based on C-LSTM," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4582-4593, September.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02475-9
    DOI: 10.1007/s13198-024-02475-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02475-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02475-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin B. Dsouza & Alexandra Maslova & Ediem Al-Jibury & Matthias Merkenschlager & Vijay K. Bhargava & Maxwell W. Libbrecht, 2022. "Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Yifei Yang & Sichen Tao & Haichuan Yang & Zijing Yuan & Zheng Tang, 2023. "Dynamic Complex Network, Exploring Differential Evolution Algorithms from Another Perspective," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    4. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Amanda de O. Regueira & Henderson Silva Wanderley, 2022. "Changes in rainfall rates and increased number of extreme rainfall events in Rio de Janeiro city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3833-3847, December.
    7. Xijin Wang & Fenghua Xie & Zhongshi Zhang & Stefan Liess & Keyan Fang & Chenxi Xu & Feng Shi, 2021. "Complex network of synchronous climate events in East Asian tree-ring data," Climatic Change, Springer, vol. 165(3), pages 1-14, April.
    8. Yanlin Zhang & Mathieu Blanchette, 2022. "Reference panel guided topological structure annotation of Hi-C data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Somnath Mondal & Ashok K. Mishra & Ruby Leung & Benjamin Cook, 2023. "Global droughts connected by linkages between drought hubs," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Zeng, Jie & Xiong, Yong & Liu, Feiyang & Ye, Junqing & Tang, Jinjun, 2022. "Uncovering the spatiotemporal patterns of traffic congestion from large-scale trajectory data: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Alves Xavier, Sílvio Fernando & Xavier, Érika Fialho Morais & Jale, Jader Silva & Stosic, Tatijana & Santos, Carlos Antonio Costa dos, 2021. "Multiscale entropy analysis of monthly rainfall time series in Paraíba, Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Yin, Xiangxin & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Xiao, Rui & Sun, Yongzheng, 2024. "Control costs of long-range interacting multi-agent systems with noise perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Antonio Samuel Alves da Silva & Ikaro Daniel de Carvalho Barreto & Moacyr Cunha-Filho & Rômulo Simões Cezar Menezes & Borko Stosic & Tatijana Stosic, 2022. "Spatial and Temporal Variability of Precipitation Complexity in Northeast Brazil," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    14. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Jun Meng & Jingfang Fan & Uma S. Bhatt & Jürgen Kurths, 2023. "Arctic weather variability and connectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Nico Wunderling & Frederik Wolf & Obbe A. Tuinenburg & Arie Staal, 2022. "Network motifs shape distinct functioning of Earth’s moisture recycling hubs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    19. Shixue Li & Tomonori Sato & Tetsu Nakamura & Wenkai Guo, 2023. "East Asian summer rainfall stimulated by subseasonal Indian monsoonal heating," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02475-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.