IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35231-3.html
   My bibliography  Save this article

Reference panel guided topological structure annotation of Hi-C data

Author

Listed:
  • Yanlin Zhang

    (McGill University)

  • Mathieu Blanchette

    (McGill University)

Abstract

Accurately annotating topological structures (e.g., loops and topologically associating domains) from Hi-C data is critical for understanding the role of 3D genome organization in gene regulation. This is a challenging task, especially at high resolution, in part due to the limited sequencing coverage of Hi-C data. Current approaches focus on the analysis of individual Hi-C data sets of interest, without taking advantage of the facts that (i) several hundred Hi-C contact maps are publicly available, and (ii) the vast majority of topological structures are conserved across multiple cell types. Here, we present RefHiC, an attention-based deep learning framework that uses a reference panel of Hi-C datasets to facilitate topological structure annotation from a given study sample. We compare RefHiC against tools that do not use reference samples and find that RefHiC outperforms other programs at both topological associating domain and loop annotation across different cell types, species, and sequencing depths.

Suggested Citation

  • Yanlin Zhang & Mathieu Blanchette, 2022. "Reference panel guided topological structure annotation of Hi-C data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35231-3
    DOI: 10.1038/s41467-022-35231-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35231-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35231-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    2. Wenbao Yu & Bing He & Kai Tan, 2017. "Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Tarik J. Salameh & Xiaotao Wang & Fan Song & Bo Zhang & Sage M. Wright & Chachrit Khunsriraksakul & Yijun Ruan & Feng Yue, 2020. "A supervised learning framework for chromatin loop detection in genome-wide contact maps," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Mark Carty & Lee Zamparo & Merve Sahin & Alvaro González & Raphael Pelossof & Olivier Elemento & Christina S. Leslie, 2017. "An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    5. Yan Zhang & Lin An & Jie Xu & Bo Zhang & W. Jim Zheng & Ming Hu & Jijun Tang & Feng Yue, 2018. "Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    6. Kevin B. Dsouza & Alexandra Maslova & Ediem Al-Jibury & Matthias Merkenschlager & Vijay K. Bhargava & Maxwell W. Libbrecht, 2022. "Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    8. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    9. Cyril Matthey-Doret & Lyam Baudry & Axel Breuer & Rémi Montagne & Nadège Guiglielmoni & Vittore Scolari & Etienne Jean & Arnaud Campeas & Philippe Henri Chanut & Edgar Oriol & Adrien Méot & Laurent Po, 2020. "Computer vision for pattern detection in chromosome contact maps," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    10. Angsheng Li & Xianchen Yin & Bingxiang Xu & Danyang Wang & Jimin Han & Yi Wei & Yun Deng & Ying Xiong & Zhihua Zhang, 2018. "Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingxuan Xu & Xiang Xu & Dandan Huang & Yawen Luo & Lin Lin & Xuemei Bai & Yang Zheng & Qian Yang & Yu Cheng & An Huang & Jingyi Shi & Xiaochen Bo & Jin Gu & Hebing Chen, 2024. "A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Yufan Zhou & Tian Li & Lavanya Choppavarapu & Kun Fang & Shili Lin & Victor X. Jin, 2024. "Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Long Jin & Danyang Wang & Jiaman Zhang & Pengliang Liu & Yujie Wang & Yu Lin & Can Liu & Ziyin Han & Keren Long & Diyan Li & Yu Jiang & Guisen Li & Yu Zhang & Jingyi Bai & Xiaokai Li & Jing Li & Lu Lu, 2023. "Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Kevin B. Dsouza & Alexandra Maslova & Ediem Al-Jibury & Matthias Merkenschlager & Vijay K. Bhargava & Maxwell W. Libbrecht, 2022. "Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Koon-Kiu Yan & Shaoke Lou & Mark Gerstein, 2017. "MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    12. Zhang Qi & Xu Zheng & Lai Yutong, 2021. "An Empirical Bayes approach for the identification of long-range chromosomal interaction from Hi-C data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(1), pages 1-15, February.
    13. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    14. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Botong Zhou & Ping Hu & Guichun Liu & Zhou Chang & Zhiwei Dong & Zihe Li & Yuan Yin & Zunzhe Tian & Ge Han & Wen Wang & Xueyan Li, 2024. "Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Mingsen Li & Huaxing Huang & Bofeng Wang & Shaoshuai Jiang & Huizhen Guo & Liqiong Zhu & Siqi Wu & Jiafeng Liu & Li Wang & Xihong Lan & Wang Zhang & Jin Zhu & Fuxi Li & Jieying Tan & Zhen Mao & Chunqi, 2022. "Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Bob Zimmermann & Juan D. Montenegro & Sofia M. C. Robb & Whitney J. Fropf & Lukas Weilguny & Shuonan He & Shiyuan Chen & Jessica Lovegrove-Walsh & Eric M. Hill & Cheng-Yi Chen & Katerina Ragkousi & Da, 2023. "Topological structures and syntenic conservation in sea anemone genomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Yuan Yin & Huizhong Fan & Botong Zhou & Yibo Hu & Guangyi Fan & Jinhuan Wang & Fan Zhou & Wenhui Nie & Chenzhou Zhang & Lin Liu & Zhenyu Zhong & Wenbo Zhu & Guichun Liu & Zeshan Lin & Chang Liu & Jion, 2021. "Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Zhen Wah Tan & Enrico Guarnera & Igor N Berezovsky, 2018. "Exploring chromatin hierarchical organization via Markov State Modelling," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    20. Lina Zheng & Wei Wang, 2022. "Regulation associated modules reflect 3D genome modularity associated with chromatin activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35231-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.