IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-023-02074-0.html
   My bibliography  Save this article

Metaheuristic-based portfolio optimization in peer-to-peer lending platforms

Author

Listed:
  • Hadis Abbasi

    (Islamic Azad University
    Birmingham City University)

  • Shahrooz Bamdad

    (Birmingham City University)

  • Morteza Rahimi

    (Birmingham City University
    Kharazmi University)

Abstract

In recent years, researchers have paid increasing attention to Peer to Peer lending market. In this lending method, the lenders don’t usually have enough knowledge to understand how much money must be allocated in each loan. So, it is important to help investors to assess the loans. According to the needs of investors, generally, a bi-objective optimization model is considered that maximizes return and minimizes risk. In current work, internal rate of return as return and probability of default as risk variable is considered. First, an artificial neural network is used to evaluate the return. Then, we apply logistic regression to predict the probability of loan default. After providing the model, due to its complexity, one of the essential issues is solving it. In this study, the model is solved by metaheuristic algorithms. This is done from different points of view, including non-dominated sorting genetic algorithm II, multi-objective particle swarm optimization, and Pareto envelope-based selection algorithm II. Finally, from the perspective of an investor, the best algorithm is introduced.

Suggested Citation

  • Hadis Abbasi & Shahrooz Bamdad & Morteza Rahimi, 2024. "Metaheuristic-based portfolio optimization in peer-to-peer lending platforms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3629-3642, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-023-02074-0
    DOI: 10.1007/s13198-023-02074-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02074-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02074-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yam, Sheung Chi Phillip & Yang, Hailiang & Yuen, Fei Lung, 2016. "Optimal asset allocation: Risk and information uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 554-561.
    2. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    3. Golnoosh Babaei & Shahrooz Bamdad, 2021. "A New Hybrid Instance-Based Learning Model for Decision-Making in the P2P Lending Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 419-432, January.
    4. Marc S. Paolella, 2015. "Multivariate asset return prediction with mixture models," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1214-1252, November.
    5. Sheila Mahapatra & Nitin Malik & Saurav Raj & Mohan Krishna Srinivasan, 2022. "Constrained optimal power flow and optimal TCSC allocation using hybrid cuckoo search and ant lion optimizer," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 721-734, April.
    6. Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
    7. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    8. Ghatak, Maitreesh, 1999. "Group lending, local information and peer selection," Journal of Development Economics, Elsevier, vol. 60(1), pages 27-50, October.
    9. Saurav Raj & Sheila Mahapatra & Chandan Kumar Shiva & Biplab Bhattacharyya, 2021. "Implementation and Optimal Sizing of TCSC for the Solution of Reactive Power Planning Problem Using Quasi-Oppositional Salp Swarm Algorithm," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 10(2), pages 74-103, April.
    10. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    11. Anuj Kumar & Sangeeta Pant & Mangey Ram & Shshank Chaube, 2019. "Multi-objective grey wolf optimizer approach to the reliability-cost optimization of life support system in space capsule," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 276-284, April.
    12. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    13. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    2. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    3. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    4. Jong Wook Lee & So Young Sohn, 2021. "Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-11, December.
    5. Mousumi Banerjee & Vanita Garg & Kusum Deep, 2023. "Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 307-327, March.
    6. Dongwoo Kim, 2023. "Can investors’ collective decision-making evolve? Evidence from peer-to-peer lending markets," Electronic Commerce Research, Springer, vol. 23(2), pages 1323-1358, June.
    7. Wang, Yao & Drabek, Zdenek & Wang, Zhengwei, 2022. "The role of social and psychological related soft information in credit analysis: Evidence from a Fintech Company," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 96(C).
    8. Hyunwoo Woo & So Young Sohn, 2022. "A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    9. Gero Friedrich Bone-Winkel & Felix Reichenbach, 2024. "Improving credit risk assessment in P2P lending with explainable machine learning survival analysis," Digital Finance, Springer, vol. 6(3), pages 501-542, September.
    10. Kaveh Bastani & Elham Asgari & Hamed Namavari, 2018. "Wide and Deep Learning for Peer-to-Peer Lending," Papers 1810.03466, arXiv.org, revised Oct 2018.
    11. Samuel Ribeiro-Navarrete & Juan Piñeiro-Chousa & M. Ángeles López-Cabarcos & Daniel Palacios-Marqués, 2022. "Crowdlending: mapping the core literature and research frontiers," Review of Managerial Science, Springer, vol. 16(8), pages 2381-2411, November.
    12. Thorsten Beck & Patrick Behr, 2017. "Individual versus Village Lending: Evidence from Montenegro," Review of Development Economics, Wiley Blackwell, vol. 21(4), pages 67-87, November.
    13. Debdatta Pal & Subrata K. Mitra, 2018. "The efficiency of microfinance institutions with problem loans: A directional distance function approach," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 285-307, September.
    14. Bauchet, Jonathan & Chakravarty, Sugato & Hunter, Brian, 2018. "Separating the wheat from the chaff: Signaling in microfinance loans," World Development, Elsevier, vol. 106(C), pages 40-50.
    15. Lionel Artige & Rosella Nicolini, 2008. "Memory in Contracts: The experience of the EBRD (1991-2003)," CREPP Working Papers 0803, Centre de Recherche en Economie Publique et de la Population (CREPP) (Research Center on Public and Population Economics) HEC-Management School, University of Liège.
    16. Kräussl, Roman & Kräussl, Zsofia & Pollet, Joshua & Rinne, Kalle, 2024. "The performance of marketplace lenders," Journal of Banking & Finance, Elsevier, vol. 162(C).
    17. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    18. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    19. Hubert Tchakoute Tchuigoua, 2011. "Contrat de crédit, décentralisation décisionnelle et performance des institutions de microfinance," Revue Finance Contrôle Stratégie, revues.org, vol. 14(2), pages 143-173, June.
    20. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-023-02074-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.