IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i3p501-512.html
   My bibliography  Save this article

Interval estimators for reliability: the bivariate normal case

Author

Listed:
  • Alessandro Barbiero

Abstract

This paper proposes procedures to provide confidence intervals (CIs) for reliability in stress--strength models, considering the particular case of a bivariate normal set-up. The suggested CIs are obtained by employing either asymptotic variances of maximum-likelihood estimators or a bootstrap procedure. The coverage and the accuracy of these intervals are empirically checked through a simulation study and compared with those of another proposal in the literature. An application to real data is provided.

Suggested Citation

  • Alessandro Barbiero, 2012. "Interval estimators for reliability: the bivariate normal case," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 501-512, June.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:3:p:501-512
    DOI: 10.1080/02664763.2011.602055
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.602055
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.602055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joby K. Jose & M. Drisya, 2020. "Time-dependent stress–strength reliability models based on phase type distribution," Computational Statistics, Springer, vol. 35(3), pages 1345-1371, September.
    2. Nabakumar Jana & Somesh Kumar & Kashinath Chatterjee, 2016. "Bayes estimation for exponential distributions with common location parameter and applications to multi-state reliability models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2697-2712, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:3:p:501-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.