IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i10d10.1007_s13198-024-02462-0.html
   My bibliography  Save this article

A modified grey wolf optimizer for wind farm layout optimization problem

Author

Listed:
  • Shitu Singh

    (South Asian University)

  • Jagdish Chand Bansal

    (South Asian University)

Abstract

The optimal solution to the wind farm layout optimization problem helps in maximizing the total energy output from the given wind farm. Meta-heuristic algorithms are one of the famous methods for achieving this objective. In this paper, we focus on developing an efficient meta-heuristic based on the grey wolf optimizer for solving the wind farm layout optimization problem. The proposed algorithm is called enhanced chaotic grey wolf optimizer and it is introduced after validating it on a well-known benchmark set of 23 numerical optimization problems. By confirming its efficiency through these benchmarks, it is utilized for wind farm layout optimization. The proposed algorithm is comprised of four search strategies including a modified GWO search mechanism, modified control parameter, chaotic search, and adaptive re-initialization of poor solutions during the search. Two case studies of the wind farm layout optimization problem are considered for numerical experiments. Results are analyzed and compared with other state-of-the-art algorithms. The comparison indicates the efficiency of the proposed algorithm for solving numerical and wind farm layout optimization problems.

Suggested Citation

  • Shitu Singh & Jagdish Chand Bansal, 2024. "A modified grey wolf optimizer for wind farm layout optimization problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4750-4778, October.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02462-0
    DOI: 10.1007/s13198-024-02462-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02462-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02462-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Huan & Li, Peikun & Gu, Wei, 2020. "A data-driven evolutionary algorithm for wind farm layout optimization," Energy, Elsevier, vol. 208(C).
    2. Ju, Xinglong & Liu, Feng, 2019. "Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation," Applied Energy, Elsevier, vol. 248(C), pages 429-445.
    3. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kaixuan & Lin, Jin & Qiu, Yiwei & Liu, Feng & Song, Yonghua, 2022. "Joint optimization of wind farm layout considering optimal control," Renewable Energy, Elsevier, vol. 182(C), pages 787-796.
    2. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
    3. Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).
    4. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    5. Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
    6. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    7. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    8. Sichen Tao & Yifei Yang & Ruihan Zhao & Hiroyoshi Todo & Zheng Tang, 2024. "Competitive Elimination Improved Differential Evolution for Wind Farm Layout Optimization Problems," Mathematics, MDPI, vol. 12(23), pages 1-24, November.
    9. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Baniassadi, Amir & Shirinbakhsh, Mehrdad & Torabi, Farschad, 2017. "Multivariate optimization of off-grid wind turbines with variable demand - Case study of a remote commercial building," Renewable Energy, Elsevier, vol. 101(C), pages 1021-1029.
    11. Garcia Marrero, Luis Enrique & Arzola Ruíz, José, 2021. "Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives," Renewable Energy, Elsevier, vol. 179(C), pages 2224-2234.
    12. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    13. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    14. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    15. Zhang, Xiaofeng & Wang, Qiang & Ye, Shitong & Luo, Kun & Fan, Jianren, 2024. "Efficient layout optimization of offshore wind farm based on load surrogate model and genetic algorithm," Energy, Elsevier, vol. 309(C).
    16. Guoqing Huang & Yao Chen & Ke Li & Jiangke Luo & Sai Zhang & Mingming Lv, 2024. "A Two-Step Grid–Coordinate Optimization Method for a Wind Farm with a Regular Layout Using a Genetic Algorithm," Energies, MDPI, vol. 17(13), pages 1-22, July.
    17. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    18. Mohamed Zaidan Qawaqzeh & Oleksandr Miroshnyk & Taras Shchur & Robert Kasner & Adam Idzikowski & Weronika Kruszelnicka & Andrzej Tomporowski & Patrycja Bałdowska-Witos & Józef Flizikowski & Marcin Zaw, 2021. "Research of Emergency Modes of Wind Power Plants Using Computer Simulation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    19. Lu, Xiangdong & Zhao, Jianhui & Markov, Vladimir & Wu, Tianyu, 2024. "Study on precise fuel injection under multiple injections of high pressure common rail system based on deep learning," Energy, Elsevier, vol. 307(C).
    20. Yin, Peng-Yeng & Cheng, Chun-Ying & Chen, Hsin-Min & Wu, Tsai-Hung, 2020. "Risk-aware optimal planning for a hybrid wind-solar farm," Renewable Energy, Elsevier, vol. 157(C), pages 290-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02462-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.