A Dimension Group-Based Comprehensive Elite Learning Swarm Optimizer for Large-Scale Optimization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Qiang Yang & Litao Hua & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems," Mathematics, MDPI, vol. 10(5), pages 1-34, February.
- Ju, Xinglong & Liu, Feng, 2019. "Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation," Applied Energy, Elsevier, vol. 248(C), pages 429-445.
- Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
- Qiang Yang & Yong Li & Xu-Dong Gao & Yuan-Yuan Ma & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2021. "An Adaptive Covariance Scaling Estimation of Distribution Algorithm," Mathematics, MDPI, vol. 9(24), pages 1-38, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiang Yang & Yu-Wei Bian & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(7), pages 1-39, March.
- Qiang Yang & Yufei Jing & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Predominant Cognitive Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
- Luca Martinelli & Giulio Capovilla & Matteo Volpato & Piero Ruol & Chiara Favaretto & Eva Loukogeorgaki & Mauro Andriollo, 2023. "Experimental Investigation of a Hybrid Device Combining a Wave Energy Converter and a Floating Breakwater in a Wave Flume Equipped with a Controllable Actuator," Energies, MDPI, vol. 17(1), pages 1-18, December.
- Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
- Qiang Yang & Litao Hua & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems," Mathematics, MDPI, vol. 10(5), pages 1-34, February.
- Chen, Kaixuan & Lin, Jin & Qiu, Yiwei & Liu, Feng & Song, Yonghua, 2022. "Joint optimization of wind farm layout considering optimal control," Renewable Energy, Elsevier, vol. 182(C), pages 787-796.
- Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
- Sofia Agostinelli & Fabrizio Cumo & Meysam Majidi Nezhad & Giuseppe Orsini & Giuseppe Piras, 2022. "Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy," Energies, MDPI, vol. 15(5), pages 1-24, March.
- Mohamed Zaidan Qawaqzeh & Oleksandr Miroshnyk & Taras Shchur & Robert Kasner & Adam Idzikowski & Weronika Kruszelnicka & Andrzej Tomporowski & Patrycja Bałdowska-Witos & Józef Flizikowski & Marcin Zaw, 2021. "Research of Emergency Modes of Wind Power Plants Using Computer Simulation," Energies, MDPI, vol. 14(16), pages 1-15, August.
- Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
- Qiang Yang & Xu Guo & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu, 2022. "Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(8), pages 1-32, April.
- Francisco Haces-Fernandez & Hua Li & David Ramirez, 2022. "Analysis of Wave Energy Behavior and Its Underlying Reasons in the Gulf of Mexico Based on Computer Animation and Energy Events Concept," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
- Shuang Wang & Abdelazim G. Hussien & Heming Jia & Laith Abualigah & Rong Zheng, 2022. "Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(10), pages 1-32, May.
- Nagpal, Shriya V. & Liu, M. Vivienne & Anderson, C. Lindsay, 2021. "A comparison of deterministic refinement techniques for wind farm layout optimization," Renewable Energy, Elsevier, vol. 168(C), pages 581-592.
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
- Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
- Nouri, Reza & Vasel-Be-Hagh, Ahmad & Archer, Cristina L., 2020. "The Coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines," Applied Energy, Elsevier, vol. 277(C).
- Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
- Chen, Wenchuang & Huang, Zhenhai & Zhang, Yongliang & Wang, Liguo & Huang, Luofeng, 2024. "Hydrodynamic performance of a three-unit heave wave energy converter array under different arrangement," Renewable Energy, Elsevier, vol. 221(C).
More about this item
Keywords
large-scale optimization; particle swarm optimization; dimension group-based comprehensive elite learning; high-dimensional problems; elite learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1072-:d:780419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.