An intelligent model based on integrated inverse document frequency and multinomial Naive Bayes for current affairs news categorisation
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-021-01471-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salminen, Joni & Yoganathan, Vignesh & Corporan, Juan & Jansen, Bernard J. & Jung, Soon-Gyo, 2019. "Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type," Journal of Business Research, Elsevier, vol. 101(C), pages 203-217.
- Tarek Kanan & Edward A. Fox, 2016. "Automated arabic text classification with P-Stemmer, machine learning, and a tailored news article taxonomy," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2667-2683, November.
- Sachin Kumar & Jagvinder Singh & Ompal Singh, 2020. "Ensemble-based extreme learning machine model for occupancy detection with ambient attributes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 173-183, July.
- Joachims, Thorsten, 1998. "Making large-scale SVM learning practical," Technical Reports 1998,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
- Sanjiban Sekhar Roy & Ali Ismail Awad & Lamesgen Adugnaw Amare & Mabrie Tesfaye Erkihun & Mohd Anas, 2022. "Multimodel Phishing URL Detection Using LSTM, Bidirectional LSTM, and GRU Models," Future Internet, MDPI, vol. 14(11), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sachin Kumar & Shivam Panwar & Jagvinder Singh & Anuj Kumar Sharma & Zairu Nisha, 2022. "iCACD: an intelligent deep learning model to categorise current affairs news article for efficient journalistic process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2572-2582, October.
- Luca Zanni, 2006. "An Improved Gradient Projection-based Decomposition Technique for Support Vector Machines," Computational Management Science, Springer, vol. 3(2), pages 131-145, April.
- Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
- Peng Han & Xinyue Yang & Yifei Zhao & Xiangmin Guan & Shengjie Wang, 2022. "Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
- Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
- Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
- Andreé Vela & Joanna Alvarado-Uribe & Hector G. Ceballos, 2021. "Indoor Environment Dataset to Estimate Room Occupancy," Data, MDPI, vol. 6(12), pages 1-12, December.
- Hoi-Ming Chi & Okan K. Ersoy & Herbert Moskowitz & Kemal Altinkemer, 2007. "Toward Automated Intelligent Manufacturing Systems (AIMS)," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 302-312, May.
- Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
- Ruchika Malhotra & Megha Khanna, 2023. "On the applicability of search-based algorithms for software change prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-73, February.
- Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
- Tianrui Yin & Wei Chen & Bo Liu & Changzhen Li & Luyao Du, 2023. "Light “You Only Look Once”: An Improved Lightweight Vehicle-Detection Model for Intelligent Vehicles under Dark Conditions," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
- Härdle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2012.
"Support vector machines with evolutionary feature selection for default prediction,"
SFB 649 Discussion Papers
2012-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hardle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2013. "Support Vector Machines with Evolutionary Feature Selection for Default Prediction," LIDAM Discussion Papers ISBA 2013040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
- Luminita STATE & Catalina COCIANU & Cristian USCATU & Marinela MIRCEA, 2013. "Extensions of the SVM Method to the Non-Linearly Separable Data," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 17(2), pages 173-182.
- C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
- Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
- Andrea Manno & Laura Palagi & Simone Sagratella, 2014. "A Class of Convergent Parallel Algorithms for SVMs Training," DIAG Technical Reports 2014-17, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Jakub Horak & Tomas Krulicky & Zuzana Rowland & Veronika Machova, 2020. "Creating a Comprehensive Method for the Evaluation of a Company," Sustainability, MDPI, vol. 12(21), pages 1-23, November.
- Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
More about this item
Keywords
News Articles; Classification; Intelligent Methods; Machine Learning; Support Vector Machine; Multinomial Naive Bayes; Inverse Document Frequency(IDF);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01471-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.