IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i5d10.1007_s13198-022-01666-6.html
   My bibliography  Save this article

iCACD: an intelligent deep learning model to categorise current affairs news article for efficient journalistic process

Author

Listed:
  • Sachin Kumar

    (University of Delhi)

  • Shivam Panwar

    (University of Delhi)

  • Jagvinder Singh

    (Delhi Technological University)

  • Anuj Kumar Sharma

    (University of Delhi)

  • Zairu Nisha

    (University of Delhi)

Abstract

In the present-day technology-driven world, information reaching at the individual’s doorstep sometimes becomes complex, haphazard and difficult to classify to get the insights. The endpoint consumer of the information requires processed information which is contextually suited to their needs, interests and is properly formatted and categorised. Interests and need-based categorization of news and stories would enable the user beforehand to further evaluate information deeply. For instances, the type current affairs related issues and news to read or not to read. This research work proposes an advanced current affairs classification model based on deep learning approaches called Intelligent Current Affairs Classification Using Deep Learning (iCACD). The proposed model is better than already proposed models based on machine learning approached which have been compared on accuracy and performance criteria. The proposed model is better in the following ways. Firstly, It is based on advanced deep neural network architecture. Secondly, the model advances the work to include both headline and body of the information/news articles rather than only processing headlines. Thirdly, A detailed comparative analysis and discussion on accuracy and performance with other machine leaning models have also been presented.

Suggested Citation

  • Sachin Kumar & Shivam Panwar & Jagvinder Singh & Anuj Kumar Sharma & Zairu Nisha, 2022. "iCACD: an intelligent deep learning model to categorise current affairs news article for efficient journalistic process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2572-2582, October.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:5:d:10.1007_s13198-022-01666-6
    DOI: 10.1007/s13198-022-01666-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01666-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01666-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarek Kanan & Edward A. Fox, 2016. "Automated arabic text classification with P-Stemmer, machine learning, and a tailored news article taxonomy," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2667-2683, November.
    2. Juan Wang & Jiangshe Zhang & Jie Zhao, 2016. "Texture Classification Using Scattering Statistical and Cooccurrence Features," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-6, February.
    3. Sachin Kumar & Jagvinder Singh & Ompal Singh, 2020. "Ensemble-based extreme learning machine model for occupancy detection with ambient attributes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 173-183, July.
    4. Sachin Kumar & Saibal K. Pal & Ram Pal Singh, 2018. "A Conceptual Architectural Design for Intelligent Health Information System: Case Study on India," Springer Proceedings in Business and Economics, in: P.K. Kapur & Uday Kumar & Ajit Kumar Verma (ed.), Quality, IT and Business Operations, pages 1-15, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachin Kumar & Aditya Sharma & B Kartheek Reddy & Shreyas Sachan & Vaibhav Jain & Jagvinder Singh, 2022. "An intelligent model based on integrated inverse document frequency and multinomial Naive Bayes for current affairs news categorisation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1341-1355, June.
    2. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    3. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Andreé Vela & Joanna Alvarado-Uribe & Hector G. Ceballos, 2021. "Indoor Environment Dataset to Estimate Room Occupancy," Data, MDPI, vol. 6(12), pages 1-12, December.
    5. Ruchika Malhotra & Megha Khanna, 2023. "On the applicability of search-based algorithms for software change prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-73, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:5:d:10.1007_s13198-022-01666-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.