IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i3d10.1007_s00362-016-0849-5.html
   My bibliography  Save this article

Estimation based on progressively type-I hybrid censored data from the Burr XII distribution

Author

Listed:
  • R. Arabi Belaghi

    (University of Tabriz)

  • M. Noori Asl

    (University of Tabriz)

Abstract

This study considers the problem of estimating unknown parameters of the Burr XII distribution under classical and Bayesian frameworks when samples are observed in the presence of progressively type-I hybrid censoring. Under classical approach, we employ EM and stochastic EM algorithm for obtaining the maximum likelihood estimators of model parameters. On the other hand, under Bayesian framework, we obtain Bayes estimators with respect to different symmetric and asymmetric loss functions under non-informative and informative priors. In this regard, we use Tierney–Kadane and importance sampling methods. Asymptotic normality theory and MCMC samples are employed to construct the confidence intervals and HPD credible intervals. To improve the estimation accuracy shrinkage pre-test estimation strategy is also suggested. The relative efficiency of these estimators with respect to both classical and Bayesian estimators are investigated numerically. Our simulation studies reveal that the shrinkage pre-test estimation strategy outperforms the estimation based on classical and Bayesian procedure. Finally, one real data set is analyzed to illustrate the methods of inference discussed here.

Suggested Citation

  • R. Arabi Belaghi & M. Noori Asl, 2019. "Estimation based on progressively type-I hybrid censored data from the Burr XII distribution," Statistical Papers, Springer, vol. 60(3), pages 761-803, June.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:3:d:10.1007_s00362-016-0849-5
    DOI: 10.1007/s00362-016-0849-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0849-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0849-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manoj Rastogi & Yogesh Tripathi, 2013. "Inference on unknown parameters of a Burr distribution under hybrid censoring," Statistical Papers, Springer, vol. 54(3), pages 619-643, August.
    2. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    3. R. Arabi Belaghi & M. Arashi & S. M. M. Tabatabaey, 2015. "On the Construction of Preliminary Test Estimator Based on Record Values for the Burr XII Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(1), pages 1-23, January.
    4. Abdel-Hamid, Alaa H., 2009. "Constant-partially accelerated life tests for Burr type-XII distribution with progressive type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2511-2523, May.
    5. B. Kibria & A. Saleh, 2010. "Preliminary test estimation of the parameters of exponential and Pareto distributions for censored samples," Statistical Papers, Springer, vol. 51(4), pages 757-773, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saieed F. Ateya & Abdulaziz S. Alghamdi & Abd Allah A. Mousa, 2022. "Future Failure Time Prediction Based on a Unified Hybrid Censoring Scheme for the Burr-X Model with Engineering Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    2. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Noori Asl & R. Arabi Belaghi & H. Bevrani, 2017. "On Burr XII Distribution Analysis Under Progressive Type-II Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 665-683, June.
    2. R. Arabi Belaghi & M. Arashi & S. Tabatabaey, 2014. "Improved confidence intervals for the scale parameter of Burr XII model based on record values," Computational Statistics, Springer, vol. 29(5), pages 1153-1173, October.
    3. Rastogi, Manoj Kumar & Tripathi, Yogesh Mani, 2013. "Estimation using hybrid censored data from a two-parameter distribution with bathtub shape," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 268-281.
    4. M. Nassar & S. G. Nassr & S. Dey, 2017. "Analysis of Burr Type-XII Distribution Under Step Stress Partially Accelerated Life Tests with Type-I and Adaptive Type-II Progressively Hybrid Censoring Schemes," Annals of Data Science, Springer, vol. 4(2), pages 227-248, June.
    5. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    6. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    7. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    8. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    9. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    10. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    11. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    12. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    13. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    14. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    15. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    16. Lemonte, Artur J. & Ferrari, Silvia L.P., 2011. "Testing hypotheses in the Birnbaum-Saunders distribution under type-II censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2388-2399, July.
    17. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    18. R. Alshenawy & Ali Al-Alwan & Ehab M. Almetwally & Ahmed Z. Afify & Hisham M. Almongy, 2020. "Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    19. Hon Ng & Ping-Shing Chan, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 287-289, August.
    20. Hassan Okasha & Yuhlong Lio & Mohammed Albassam, 2021. "On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(22), pages 1-38, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:3:d:10.1007_s00362-016-0849-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.