IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v19y2020i2d10.1007_s10700-020-09318-9.html
   My bibliography  Save this article

Finite-time stability of uncertain fractional difference equations

Author

Listed:
  • Qinyun Lu

    (Nanjing University of Science and Technology)

  • Yuanguo Zhu

    (Nanjing University of Science and Technology)

Abstract

Uncertain fractional difference equations may preferably describe the behavior of the systems with the memory effect and discrete feature in the uncertain environment. So it is of great significance to investigate their stability. In this paper, the concept of finite-time stability almost surely for uncertain fractional difference equations is introduced. A finite-time stability theorem is then stated by Mittag–Leffler function and proved by a generalized Gronwall inequality on a finite time. Some examples are finally presented to illustrate the validity of our results.

Suggested Citation

  • Qinyun Lu & Yuanguo Zhu, 2020. "Finite-time stability of uncertain fractional difference equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(2), pages 239-249, June.
  • Handle: RePEc:spr:fuzodm:v:19:y:2020:i:2:d:10.1007_s10700-020-09318-9
    DOI: 10.1007/s10700-020-09318-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-020-09318-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-020-09318-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Ziqiang & Zhu, Yuanguo, 2019. "Numerical approach for solution to an uncertain fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 137-148.
    2. Ziqiang Lu & Hongyan Yan & Yuanguo Zhu, 2019. "European option pricing model based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 199-217, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    2. Zhiyong Huang & Chunliu Zhu & Jinwu Gao, 2021. "Stability analysis for uncertain differential equation by Lyapunov’s second method," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 129-144, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian & Zhu, Yuanguo & Gu, Yajing & Lu, Ziqiang, 2021. "Solutions of linear uncertain fractional order neutral differential equations," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    2. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    4. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Jin, Ting & Ding, Hui & Xia, Hongxuan & Bao, Jinfeng, 2021. "Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    7. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2020. "Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Weiwei Wang & Dan A. Ralescu & Panpan Zhang, 2024. "Valuation of convertible bond based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 513-538, December.
    9. Weiwei Wang & Dan A. Ralescu, 2021. "Option pricing formulas based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 20(4), pages 471-495, December.
    10. Yüzbaşı, Şuayip & Yıldırım, Gamze, 2022. "A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    11. Xu, Qinqin & Zhu, Yuanguo, 2022. "Reliability modeling of uncertain random fractional differential systems with competitive failures," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Caiwen Gao & Zhiqiang Zhang & Baoliang Liu, 2022. "Uncertain Population Model with Jumps," Mathematics, MDPI, vol. 10(13), pages 1-12, June.
    13. Zhiwei Wang & Yuanguo Zhu, 2024. "LQ optimal control of uncertain fractional differential systems," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 577-597, December.
    14. Lu, Qinyun & Zhu, Yuanguo, 2021. "LQ optimal control of fractional-order discrete-time uncertain systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    15. Shu, Yadong & Li, Bo, 2022. "Existence and uniqueness of solutions to uncertain fractional switched systems with an uncertain stock model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Pshtiwan Othman Mohammed, 2019. "A Generalized Uncertain Fractional Forward Difference Equations of Riemann-Liouville Type," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(4), pages 43-50, August.
    17. Yan, Hongyan & Jin, Ting & Sun, Yun, 2020. "Uncertain bang–bang control problem for multi-stage switched systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    19. Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    20. Kai Yao & Zhongfeng Qin, 2021. "Barrier option pricing formulas of an uncertain stock model," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 81-100, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:19:y:2020:i:2:d:10.1007_s10700-020-09318-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.