A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.126956
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhiyuan Li & Meichun Wang & Yulan Wang & Jing Pang, 2020. "Using Reproducing Kernel for Solving a Class of Fractional Order Integral Differential Equations," Advances in Mathematical Physics, Hindawi, vol. 2020, pages 1-12, March.
- M. Sameeh & A. Elsaid, 2016. "Chebyshev Collocation Method for Parabolic Partial Integrodifferential Equations," Advances in Mathematical Physics, Hindawi, vol. 2016, pages 1-7, December.
- Lu, Ziqiang & Zhu, Yuanguo, 2019. "Numerical approach for solution to an uncertain fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 137-148.
- Polyanin, Andrei D., 2019. "Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 282-292.
- Santanu Saha Ray & Rasajit K. Bera & Adem Kılıçman & Om P. Agrawal & Yasir Khan, 2015. "Analytical and Numerical Methods for Solving Partial Differential Equations and Integral Equations Arising in Physical Models 2014," Abstract and Applied Analysis, Hindawi, vol. 2015, pages 1-2, March.
- Hajishafieiha, J. & Abbasbandy, S., 2020. "A new class of polynomial functions for approximate solution of generalized Benjamin–Bona–Mahony–Burgers (gBBMB) equations," Applied Mathematics and Computation, Elsevier, vol. 367(C).
- Al-Smadi, Mohammed & Arqub, Omar Abu, 2019. "Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 280-294.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Deniz Elmaci & Nurcan Baykus & Savasaneril, 2022. "The Lucas Polynomial Solution Of Linear Volterra-Fredholm Integral Equations," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 6(1), pages 21-25, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Jian & Zhu, Yuanguo & Gu, Yajing & Lu, Ziqiang, 2021. "Solutions of linear uncertain fractional order neutral differential equations," Applied Mathematics and Computation, Elsevier, vol. 407(C).
- Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
- Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
- Xu, Qinqin & Zhu, Yuanguo, 2022. "Reliability modeling of uncertain random fractional differential systems with competitive failures," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Alexander V. Aksenov & Andrei D. Polyanin, 2021. "Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions," Mathematics, MDPI, vol. 9(4), pages 1-31, February.
- Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
- Jian Zhao & Zhenyue Chen & Jingqi Tu & Yunmei Zhao & Yiqun Dong, 2022. "Application of LSTM Approach for Predicting the Fission Swelling Behavior within a CERCER Composite Fuel," Energies, MDPI, vol. 15(23), pages 1-14, November.
- Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
- Zhiwei Wang & Yuanguo Zhu, 2024. "LQ optimal control of uncertain fractional differential systems," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 577-597, December.
- Andrei D. Polyanin & Vsevolod G. Sorokin, 2021. "Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy," Mathematics, MDPI, vol. 9(5), pages 1-22, March.
- Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Ngondiep, Eric, 2024. "A high-order combined finite element/interpolation approach for multidimensional nonlinear generalized Benjamin–Bona–Mahony–Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 560-577.
- Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
- Cristian Ghiu & Constantin Udriste, 2022. "Solutions for Multitime Reaction–Diffusion PDE," Mathematics, MDPI, vol. 10(19), pages 1-12, October.
- Bentout, Soufiane & Djilali, Salih, 2023. "Asymptotic profiles of a nonlocal dispersal SIR epidemic model with treat-age in a heterogeneous environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 926-956.
- Lu, Qinyun & Zhu, Yuanguo, 2021. "LQ optimal control of fractional-order discrete-time uncertain systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Kamran Kamran & Zahir Shah & Poom Kumam & Nasser Aedh Alreshidi, 2020. "A Meshless Method Based on the Laplace Transform for the 2D Multi-Term Time Fractional Partial Integro-Differential Equation," Mathematics, MDPI, vol. 8(11), pages 1-14, November.
- Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
- Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
More about this item
Keywords
Collocation method; Error analysis; Partial integro-differential equations; Pell–Lucas polynomials;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:421:y:2022:i:c:s009630032200042x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.