IDEAS home Printed from https://ideas.repec.org/a/ibn/jmrjnl/v11y2019i4p43.html
   My bibliography  Save this article

A Generalized Uncertain Fractional Forward Difference Equations of Riemann-Liouville Type

Author

Listed:
  • Pshtiwan Othman Mohammed

Abstract

In this paper, we firstly recall the definition of an uncertain fractional forward difference equation with Riemann-Liouvillelike forward difference. After that analytic solutions to a generalized uncertain fractional difference equations are solved by using the Picard successive iteration method. Moreover, the existence and uniqueness theorem of the solutions are proved by applying Banach contraction mapping theorem. Finally, two examples are presented to illustrate the validity of the existence and uniqueness theorem.

Suggested Citation

  • Pshtiwan Othman Mohammed, 2019. "A Generalized Uncertain Fractional Forward Difference Equations of Riemann-Liouville Type," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(4), pages 43-50, August.
  • Handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:4:p:43
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/40173/41286
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/view/0/40173
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Ziqiang & Zhu, Yuanguo, 2019. "Numerical approach for solution to an uncertain fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 137-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed, Pshtiwan Othman & Abdeljawad, Thabet & Hamasalh, Faraidun Kadir, 2021. "Discrete Prabhakar fractional difference and sum operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian & Zhu, Yuanguo & Gu, Yajing & Lu, Ziqiang, 2021. "Solutions of linear uncertain fractional order neutral differential equations," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    2. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    3. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Yüzbaşı, Şuayip & Yıldırım, Gamze, 2022. "A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    5. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    6. Zhiwei Wang & Yuanguo Zhu, 2024. "LQ optimal control of uncertain fractional differential systems," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 577-597, December.
    7. Lu, Qinyun & Zhu, Yuanguo, 2021. "LQ optimal control of fractional-order discrete-time uncertain systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Jin, Ting & Ding, Hui & Xia, Hongxuan & Bao, Jinfeng, 2021. "Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2019. "Extreme values for solution to uncertain fractional differential equation and application to American option pricing model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2020. "Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    13. Weiwei Wang & Dan A. Ralescu, 2021. "Option pricing formulas based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 20(4), pages 471-495, December.
    14. Xu, Qinqin & Zhu, Yuanguo, 2022. "Reliability modeling of uncertain random fractional differential systems with competitive failures," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    16. Qinyun Lu & Yuanguo Zhu, 2020. "Finite-time stability of uncertain fractional difference equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(2), pages 239-249, June.
    17. Weiwei Wang & Dan A. Ralescu & Panpan Zhang, 2024. "Valuation of convertible bond based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 513-538, December.

    More about this item

    Keywords

    Riemann-Liouville fractional integral; discrete fractional calculus; uncertainty theory; fractional forward difference equations;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:4:p:43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.