IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v4y2012i3d10.1007_s12543-012-0118-9.html
   My bibliography  Save this article

Optimal selection of a landfill disposal site using a modified fuzzy utility approach

Author

Listed:
  • Ajit Pratap Singh

    (BITS Pilani)

  • Subodh Kant Dubey

    (BITS Pilani)

Abstract

The present paper develops an integrated fuzzy based model to select an optimal landfill site among the given alternative sites by using the concept of fuzzyutility method and multi-nomial logit theory. The suitability of different landfill sites are evaluated based on some important criteria involved in the process such as accessibility and transportation; environmental, geological and climatic conditions; socioeconomic conditions; land use pattern; and safety at the selected site. These criteria are assessed qualitatively by the decision makers based on their relative degree of importance. The importance weights and ratings of each criterion have been defined in the form of triplets of triangular fuzzy numbers by taking opinion of the decision makers. The corresponding triplets of ratings of each site are used to derive the utility value of the alternative sites. A multi-nomial logit model has been applied to calculate the probability of selection of each alternative site which can help policy makers to take appropriate decisions. Finally, the proposed methodology has been applied to allocate suitable landfill sites for disposing off municipal solid waste for Pilani town which is located in Jhunjhunu district of Rajasthan. The results evaluated by the modified fuzzy utility are also compared to the outputs of a direct method which is basically based on certain linguistic aggregation operators for group decision making. Computational results clearly demonstrate that the results obtained by the proposed method are coinciding very well and prepares a basis to adopt an overall strategy for selecting appropriate landfill site for proper solid waste disposal and its management.

Suggested Citation

  • Ajit Pratap Singh & Subodh Kant Dubey, 2012. "Optimal selection of a landfill disposal site using a modified fuzzy utility approach," Fuzzy Information and Engineering, Springer, vol. 4(3), pages 313-338, September.
  • Handle: RePEc:spr:fuzinf:v:4:y:2012:i:3:d:10.1007_s12543-012-0118-9
    DOI: 10.1007/s12543-012-0118-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-012-0118-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-012-0118-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajit Singh & S. Ghosh & Pankaj Sharma, 2007. "Water quality management of a stretch of river Yamuna: An interactive fuzzy multi-objective approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 515-532, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    2. Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
    3. Ping-Feng Pai & Fong-Chuan Lee, 2010. "A Rough Set Based Model in Water Quality Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2405-2418, September.
    4. E. Hernandez & Venkatesh Uddameri, 2010. "Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4589-4612, December.
    5. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    6. R. Srinivas & Ajit Pratap Singh & Rishikesh Sharma, 2017. "A Scenario Based Impact Assessment of Trace Metals on Ecosystem of River Ganges Using Multivariate Analysis Coupled with Fuzzy Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4165-4185, October.
    7. Wei Yang & Zhifeng Yang, 2010. "An Interactive Fuzzy Satisfying Approach for Sustainable Water Management in the Yellow River Delta, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1273-1284, May.
    8. Mohamad Fulazzaky, 2009. "Water Quality Evaluation System to Assess the Brantas River Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3019-3033, November.
    9. H. Zhu & G. Huang & P. Guo & X. Qin, 2009. "A Fuzzy Robust Nonlinear Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2913-2940, November.
    10. Maryam Zavareh & Viviana Maggioni, 2018. "Application of Rough Set Theory to Water Quality Analysis: A Case Study," Data, MDPI, vol. 3(4), pages 1-15, November.
    11. Huapeng Qin & Jingjing Jiang & Guangtao Fu & Ying Zheng, 2013. "Optimal Water Quality Management Considering Spatial and Temporal Variations in a Tidal River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 843-858, February.
    12. R. Srinivas & Ajit Pratap Singh, 2018. "Impact assessment of industrial wastewater discharge in a river basin using interval-valued fuzzy group decision-making and spatial approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2373-2397, October.
    13. Zong Woo Geem & Sung Yong Chung & Jin-Hong Kim, 2018. "Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    14. R. Srinivas & Ajit Pratap Singh & Divyanshu Shankar, 2020. "Understanding the threats and challenges concerning Ganges River basin for effective policy recommendations towards sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3655-3690, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:4:y:2012:i:3:d:10.1007_s12543-012-0118-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.