IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i18p5554-5566.html
   My bibliography  Save this article

A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem

Author

Listed:
  • Xiao-long Zheng
  • Ling Wang

Abstract

Different from the classical job shop scheduling, the dual-resource constrained flexible job-shop scheduling problem (DRCFJSP) should deal with job sequence, machine assignment and worker assignment all together. In this paper, a knowledge-guided fruit fly optimisation algorithm (KGFOA) with a new encoding scheme is proposed to solve the DRCFJSP with makespan minimisation criterion. In the KGFOA, two types of permutation-based search operators are used to perform the smell-based search for job sequence and resource (machine and worker) assignment, respectively. To enhance the search capability, a knowledge-guided search stage is incorporated into the KGFOA with two new search operators particularly designed for adjusting the operation sequence and the resource assignment, respectively. Due to the combination of the knowledge-guided search and the smell-based search, global exploration and local exploitation can be balanced. Besides, the effect of parameter setting of the KGFOA is investigated and numerical tests are carried out using two sets of instances. The comparative results show that the KGFOA is more effective than the existing algorithms in solving the DRCFJSP.

Suggested Citation

  • Xiao-long Zheng & Ling Wang, 2016. "A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5554-5566, September.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:18:p:5554-5566
    DOI: 10.1080/00207543.2016.1170226
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1170226
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1170226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Wu & Junjian Peng & Xiao Xiao & Shaomin Wu, 2021. "An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 707-728, March.
    2. Federica Costa & Matthias Thürer & Alberto Portioli-Staudacher, 2023. "Heterogeneous worker multi-functionality and efficiency in dual resource constrained manufacturing lines: an assessment by simulation," Operations Management Research, Springer, vol. 16(3), pages 1476-1489, September.
    3. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    4. Aidin Delgoshaei & Mohd Khairol Anuar Bin Mohd Ariffin & Zulkiflle B. Leman, 2022. "An Effective 4–Phased Framework for Scheduling Job-Shop Manufacturing Systems Using Weighted NSGA-II," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    5. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    6. Dominik Kress & David Müller & Jenny Nossack, 2019. "A worker constrained flexible job shop scheduling problem with sequence-dependent setup times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 179-217, March.
    7. Shoujing Zhang & Tiantian Hou & Qing Qu & Adam Glowacz & Samar M. Alqhtani & Muhammad Irfan & Grzegorz Królczyk & Zhixiong Li, 2022. "An Improved Mayfly Method to Solve Distributed Flexible Job Shop Scheduling Problem under Dual Resource Constraints," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    8. M. Yazdani & M. Zandieh & R. Tavakkoli-Moghaddam, 2019. "Evolutionary algorithms for multi-objective dual-resource constrained flexible job-shop scheduling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 983-1006, September.
    9. Alejandro Vital-Soto & Mohammed Fazle Baki & Ahmed Azab, 2023. "A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 626-668, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:18:p:5554-5566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.