IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v32y2020i1d10.1007_s10696-019-09354-7.html
   My bibliography  Save this article

Scheduling outpatient day service operations for rheumatology diseases

Author

Listed:
  • Rosita Guido

    (University of Calabria)

  • Giuseppe Ielpa

    (University of Calabria)

  • Domenico Conforti

    (University of Calabria)

Abstract

Appointment scheduling systems represent a method to manage patient waiting lists effectively. This work advances an innovative quantitative approach for the outpatient appointment scheduling problems, based on an optimization model, to manage outpatient Day Service operations. It focuses on outpatient appointment scheduling. We start from earlier works in the literature to design models with the objective to maximize the number of patients’ appointments, to reduce patient’s waiting time, and to increase patient’s satisfaction. The proposed combinatorial problem is solved by Answer Set Programming, which is a declarative logic formalism, widely used in Artificial Intelligence and recognized as a powerful tool for Knowledge Representation and Reasoning, to show the advantages of declarative programming for modelling and fast prototyping problem requirements. We apply the model to solve real-life scenarios of the Rheumatology domain. We compare the results on the real instance already solved in our earlier work and extend the computational experiments on some new generated and realistic instances. Since the computational times increase with the size of instances, we develop a three-phase solution approach based on patient’s priority. The heuristic approach is hierarchical and enables to solve more instances than the one-run approach within the computational time limit.

Suggested Citation

  • Rosita Guido & Giuseppe Ielpa & Domenico Conforti, 2020. "Scheduling outpatient day service operations for rheumatology diseases," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 102-128, March.
  • Handle: RePEc:spr:flsman:v:32:y:2020:i:1:d:10.1007_s10696-019-09354-7
    DOI: 10.1007/s10696-019-09354-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-019-09354-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-019-09354-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    2. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    3. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    4. Domenico Conforti & Francesca Guerriero & Rosita Guido & Marco Cerinic & Maria Conforti, 2011. "An optimal decision making model for supporting week hospital management," Health Care Management Science, Springer, vol. 14(1), pages 74-88, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Cappanera & Jingshan Li & Evren Sahin & Nico J. Vandaele & Filippo Visintin, 2020. "Editorial for the special issue on “Modelling, simulation, and optimization in health care”," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 1-5, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    2. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    3. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    4. Adam Diamant, 2021. "Dynamic multistage scheduling for patient-centered care plans," Health Care Management Science, Springer, vol. 24(4), pages 827-844, December.
    5. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    6. Nguyen, Thu Ba T. & Sivakumar, Appa Iyer & Graves, Stephen C., 2018. "Capacity planning with demand uncertainty for outpatient clinics," European Journal of Operational Research, Elsevier, vol. 267(1), pages 338-348.
    7. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    8. Nossack, Jenny, 2022. "Therapy scheduling and therapy planning at hospitals," Omega, Elsevier, vol. 109(C).
    9. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    10. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    11. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.
    12. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    13. Tu San Pham & Antoine Legrain & Patrick De Causmaecker & Louis-Martin Rousseau, 2023. "A Prediction-Based Approach for Online Dynamic Appointment Scheduling: A Case Study in Radiotherapy Treatment," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 844-868, July.
    14. Agnihothri, Saligrama & Cappanera, Paola & Nonato, Maddalena & Visintin, Filippo, 2024. "Appointment scheduling in surgery pre-admission testing clinics," Omega, Elsevier, vol. 123(C).
    15. Guillaume Lamé & Sonya Crowe & Matthew Barclay, 2022. "‘What’s the evidence?’—Towards more empirical evaluations of the impact of OR interventions in healthcare," Post-Print hal-03035075, HAL.
    16. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    17. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    18. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    19. Karsten Schwarz & Michael Römer & Taïeb Mellouli, 2019. "A data-driven hierarchical MILP approach for scheduling clinical pathways: a real-world case study from a German university hospital," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 597-636, December.
    20. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:32:y:2020:i:1:d:10.1007_s10696-019-09354-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.