IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v8y2023i3p47-d1080180.html
   My bibliography  Save this article

A Dataset of Service Time and Related Patient Characteristics from an Outpatient Clinic

Author

Listed:
  • Haolin Feng

    (School of Business, Sun Yat-sen University, Guangzhou 510275, China)

  • Yiwu Jia

    (Lingnan College, Sun Yat-sen University, Guangzhou 510275, China)

  • Siyi Zhou

    (Lingnan College, Sun Yat-sen University, Guangzhou 510275, China)

  • Hongyi Chen

    (Lingnan College, Sun Yat-sen University, Guangzhou 510275, China
    Hangu TCM Innovation and Research Institute, Guangzhou 510627, China)

  • Teng Huang

    (School of Business, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

Outpatient clinics’ productivity largely depends on their appointment scheduling systems. It is crucial for appointment scheduling to understand the intrinsic heterogeneity in patient and service types and act accordingly. This article describes an outpatient clinic dataset of consultation service time with heterogeneous characteristics. The dataset contains 6637 consultation records collected from 381 half-day sessions between 2018 and 2019. Each record includes encrypted session and patient IDs, consultation start and (approximated) end times, the month and day of the week, whether it was on a holiday, the patient’s visit count for a specific medical condition, gender, whether the consultation was cancer-related, and the distance from the patient’s mailing address to the clinic. These features can be used to classify patients into heterogeneous groups in studies of appointment scheduling. Therefore, this dataset with rich, heterogeneous patient characteristics provides a valuable opportunity for healthcare operations management researchers to develop, test, and benchmark the performance of their models and methods. It can also be used for studying appointment scheduling in other service industries. More generally, it provides pedagogical value in areas related to management science and operations research, applied statistics, and machine learning.

Suggested Citation

  • Haolin Feng & Yiwu Jia & Siyi Zhou & Hongyi Chen & Teng Huang, 2023. "A Dataset of Service Time and Related Patient Characteristics from an Outpatient Clinic," Data, MDPI, vol. 8(3), pages 1-15, February.
  • Handle: RePEc:gam:jdataj:v:8:y:2023:i:3:p:47-:d:1080180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/8/3/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/8/3/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Zhang & Xiaolan Xie, 2015. "Simulation-based optimization for surgery appointment scheduling of multiple operating rooms," IISE Transactions, Taylor & Francis Journals, vol. 47(9), pages 998-1012, September.
    2. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    3. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    4. Seung Jun Lee & Gregory R. Heim & Chelliah Sriskandarajah & Yunxia Zhu, 2018. "Outpatient Appointment Block Scheduling Under Patient Heterogeneity and Patient No†Shows," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 28-48, January.
    5. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    6. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    7. Erjie Ang & Sara Kwasnick & Mohsen Bayati & Erica L. Plambeck & Michael Aratow, 2016. "Accurate Emergency Department Wait Time Prediction," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 141-156, February.
    8. Francis de Véricourt & Otis B. Jennings, 2011. "Nurse Staffing in Medical Units: A Queueing Perspective," Operations Research, INFORMS, vol. 59(6), pages 1320-1331, December.
    9. William P. Millhiser & Emre A. Veral, 2019. "A decision support system for real-time scheduling of multiple patient classes in outpatient services," Health Care Management Science, Springer, vol. 22(1), pages 180-195, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    2. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    3. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    4. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    5. Vink, Wouter & Kuiper, Alex & Kemper, Benjamin & Bhulai, Sandjai, 2015. "Optimal appointment scheduling in continuous time: The lag order approximation method," European Journal of Operational Research, Elsevier, vol. 240(1), pages 213-219.
    6. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    7. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    8. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    9. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    10. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    11. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    12. Kuiper, Alex & Mandjes, Michel, 2015. "Appointment scheduling in tandem-type service systems," Omega, Elsevier, vol. 57(PB), pages 145-156.
    13. Soroush Saghafian & Nikolaos Trichakis & Ruihao Zhu & Helen A. Shih, 2023. "Joint patient selection and scheduling under no‐shows: Theory and application in proton therapy," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 547-563, February.
    14. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    15. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    16. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    17. Song-Hee Kim & Ward Whitt & Won Chul Cha, 2018. "A Data-Driven Model of an Appointment-Generated Arrival Process at an Outpatient Clinic," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 181-199, February.
    18. Yu Zhang & Vidyadhar G. Kulkarni, 2017. "Two-day appointment scheduling with patient preferences and geometric arrivals," Queueing Systems: Theory and Applications, Springer, vol. 85(1), pages 173-209, February.
    19. Moshe Haviv & Liron Ravner, 2014. "Strategic timing of arrivals to a finite queue multi-server loss system," Discussion Paper Series dp675, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    20. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:8:y:2023:i:3:p:47-:d:1080180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.