Author
Listed:
- Shuming Wang
(School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China; MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing 100190, China)
- Jun Li
(Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 117576, Singapore)
- Marcus Ang
(Lee Kong Chian School of Business, Singapore Management University, Singapore 178899, Singapore)
- Tsan Sheng Ng
(Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 117576, Singapore)
Abstract
In this study, we investigate an appointment sequencing and scheduling problem with heterogeneous user delay tolerances under service time uncertainty. We aim to capture the delay tolerance effect with heterogeneity, in an operationally effective and computationally tractable fashion, for the appointment scheduling problem. To this end, we first propose a Tolerance-Aware Delay (TAD) index that incorporates explicitly the user tolerance information in delay evaluation. We show that the TAD index enjoys decision-theoretical rationale in terms of Tolerance sensitivity , monotonicity , and convexity and positive homogeneity , which enables it to incorporate the frequency and intensity of delays over the tolerance in a coherent manner. Specifically, the convexity of TAD index ensures a tractable modeling of the collective delay dissatisfaction in the appointment scheduling problem. Using the TAD index, we then develop an appointment model with known empirical service time distribution that minimizes the overall tolerance-aware delays of all users. We analyze the impact of delay tolerance on the sequence and schedule decisions and show that the resultant TAD appointment model can be reformulated as a mixed-integer linear program (MILP). Furthermore, we extend the TAD appointment model by considering service time ambiguity. In particular, we encode into the TAD index a moment ambiguity set and a Wasserstein ambiguity set, respectively. The former captures effectively the correlation among service times across positions and user types, whereas the latter captures directly the service time data information. We show that both of the resultant TAD models under ambiguity can be reformulated as polynomial-sized, mixed-integer conic programs (MICPs). Finally, we compare our TAD models with some existing counterpart approaches and the current practice using synthetic data and a case of real hospital data, respectively. Our results demonstrate the effectiveness of the TAD appointment models in capturing the user delay tolerance with heterogeneity and mitigating the worst-case delays.
Suggested Citation
Shuming Wang & Jun Li & Marcus Ang & Tsan Sheng Ng, 2024.
"Appointment Scheduling with Delay Tolerance Heterogeneity,"
INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1201-1224, September.
Handle:
RePEc:inm:orijoc:v:36:y:2024:i:5:p:1201-1224
DOI: 10.1287/ijoc.2023.0025
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:5:p:1201-1224. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.