IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v24y2020i3d10.1007_s00780-020-00428-1.html
   My bibliography  Save this article

Option valuation and hedging using an asymmetric risk function: asymptotic optimality through fully nonlinear partial differential equations

Author

Listed:
  • Emmanuel Gobet

    (Institut Polytechnique de Paris)

  • Isaque Pimentel

    (Institut Polytechnique de Paris
    Electricité de France (EDF))

  • Xavier Warin

    (Electricité de France (EDF))

Abstract

Discrete-time hedging produces a residual P&L, namely the tracking error. The major problem is to get valuation/hedging policies minimising this error. We evaluate the risk between trading dates through a function penalising profits and losses asymmetrically. After deriving the asymptotics from a discrete-time risk measurement for a large number of trading dates, we derive the optimal strategies minimising the asymptotic risk in a continuous-time setting. We characterise optimality through a class of fully nonlinear partial differential equations (PDEs). Numerical experiments show that the optimal strategies associated with the discrete and the asymptotic approaches coincide asymptotically.

Suggested Citation

  • Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2020. "Option valuation and hedging using an asymmetric risk function: asymptotic optimality through fully nonlinear partial differential equations," Finance and Stochastics, Springer, vol. 24(3), pages 633-675, July.
  • Handle: RePEc:spr:finsto:v:24:y:2020:i:3:d:10.1007_s00780-020-00428-1
    DOI: 10.1007/s00780-020-00428-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-020-00428-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-020-00428-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2018. "Local Risk-Minimization With Multiple Assets Under Illiquidity With Applications In Energy Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-44, June.
    2. repec:dau:papers:123456789/4273 is not listed on IDEAS
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. Benoit Pochart & Jean-Philippe Bouchaud, 2004. "Option pricing and hedging with minimum local expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 607-618.
    5. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    6. Frédéric Abergel & Nicolas Millot, 2011. "Nonquadratic Local Risk-Minimization for Hedging Contingent Claims in Incomplete Markets," Post-Print hal-00620843, HAL.
    7. Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
    8. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    9. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    10. Potters, Marc & Bouchaud, Jean-Philippe & Sestovic, Dragan, 2001. "Hedged Monte-Carlo: low variance derivative pricing with objective probabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 517-525.
    11. Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2017. "Local risk-minimization with multiple assets under illiquidity with applications in energy markets," Papers 1705.06918, arXiv.org, revised Jun 2018.
    12. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    13. Föllmer, H. & Schweizer, M., 1988. "Hedging by Sequential Regression: An Introduction to the Mathematics of Option Trading," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 147-160, November.
    14. Schweizer, Martin, 1999. "A guided tour through quadratic hedging approaches," SFB 373 Discussion Papers 1999,96, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:wpaper:hal-01761234 is not listed on IDEAS
    2. Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2020. "Option valuation and hedging using asymmetric risk function: asymptotic optimality through fully nonlinear Partial Differential Equations," Post-Print hal-01761234, HAL.
    3. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    4. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    5. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    6. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    7. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    8. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    9. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    10. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    11. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    12. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    13. repec:cte:wsrepe:28434 is not listed on IDEAS
    14. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    15. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    16. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    17. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    18. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    19. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    20. Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
    21. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    22. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    23. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.

    More about this item

    Keywords

    Hedging; Asymmetric risk; Fully nonlinear parabolic PDE; Regression Monte Carlo;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:24:y:2020:i:3:d:10.1007_s00780-020-00428-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.