IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v21y2014i2p97-120.html
   My bibliography  Save this article

A Discrete-Time Clark-Ocone Formula for Poisson Functionals

Author

Listed:
  • Takafumi Amaba

Abstract

In this paper, we establish a discrete-time version of Clark(-Ocone-Haussmann) formula for Poisson functionals. The formula is applied to the estimation of “hedging error”. Copyright Springer Japan 2014

Suggested Citation

  • Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
  • Handle: RePEc:kap:apfinm:v:21:y:2014:i:2:p:97-120
    DOI: 10.1007/s10690-013-9178-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-013-9178-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-013-9178-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elliott, R. J. & Tsoi, A. H., 1993. "Integration by Parts for Poisson Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 179-190, February.
    2. Jan Ubøe & Bernt Øksendal & Knut Aase & Nicolas Privault, 2000. "White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance," Finance and Stochastics, Springer, vol. 4(4), pages 465-496.
    3. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
    4. E. Temam, 2003. "Analysis of Error with Malliavin Calculus: Application to Hedging," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 201-214, January.
    5. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    6. Takaki Hayashi & Per A. Mykland, 2005. "Evaluating Hedging Errors: An Asymptotic Approach," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 309-343, April.
    7. Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
    8. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsubasa Nishimura & Kenji Yasutomi & Tomooki Yuasa, 2022. "Higher-Order Error Estimates of the Discrete-Time Clark–Ocone Formula," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2518-2539, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    2. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
    3. Jirô Akahori & Takafumi Amaba & Kaori Okuma, 2017. "A Discrete-Time Clark–Ocone Formula and its Application to an Error Analysis," Journal of Theoretical Probability, Springer, vol. 30(3), pages 932-960, September.
    4. Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
    5. Mats Brod'en & Magnus Wiktorsson, 2010. "Hedging Errors Induced by Discrete Trading Under an Adaptive Trading Strategy," Papers 1004.4526, arXiv.org.
    6. Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
    7. Masaaki Fukasawa, 2012. "Efficient Discretization of Stochastic Integrals," Papers 1204.0637, arXiv.org.
    8. Asaf Cohen & Yan Dolinsky, 2022. "A scaling limit for utility indifference prices in the discretised Bachelier model," Finance and Stochastics, Springer, vol. 26(2), pages 335-358, April.
    9. Mathieu Rosenbaum & Peter Tankov, 2011. "Asymptotically optimal discretization of hedging strategies with jumps," Papers 1108.5940, arXiv.org, revised Apr 2014.
    10. Simon F'ecamp & Joseph Mikael & Xavier Warin, 2019. "Risk management with machine-learning-based algorithms," Papers 1902.05287, arXiv.org, revised Aug 2020.
    11. Asaf Cohen & Yan Dolinsky, 2021. "A Scaling Limit for Utility Indifference Prices in the Discretized Bachelier Model," Papers 2102.11968, arXiv.org, revised Mar 2022.
    12. Wang, Wensheng, 2019. "Asymptotics for discrete time hedging errors under fractional Black–Scholes models," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 160-170.
    13. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.
    14. Tsubasa Nishimura & Kenji Yasutomi & Tomooki Yuasa, 2022. "Higher-Order Error Estimates of the Discrete-Time Clark–Ocone Formula," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2518-2539, December.
    15. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    16. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2014. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Working Papers hal-00979199, HAL.
    17. El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
    18. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    19. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    20. Thai Huu Nguyen & Serguei Pergamenschchikov, 2015. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Papers 1505.02627, arXiv.org, revised Sep 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:21:y:2014:i:2:p:97-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.