IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i3d10.1007_s00780-017-0334-6.html
   My bibliography  Save this article

Bounds for VIX futures given S&P 500 smiles

Author

Listed:
  • Julien Guyon

    (Bloomberg L.P.)

  • Romain Menegaux

    (Bloomberg L.P.)

  • Marcel Nutz

    (Columbia University)

Abstract

We derive sharp bounds for the prices of VIX futures using the full information of S&P 500 smiles. To that end, we formulate the model-free sub/superreplication of the VIX by trading in the S&P 500 and its vanilla options as well as the forward-starting log-contracts. A dual problem of minimizing/maximizing certain risk-neutral expectations is introduced and shown to yield the same value. The classical bounds for VIX futures given the smiles only use a calendar spread of log-contracts on the S&P 500. We analyze for which smiles the classical bounds are sharp and how they can be improved when they are not. In particular, we introduce a family of functionally generated portfolios which often improves the classical bounds while still being tractable; more precisely, they are determined by a single concave/convex function on the line. Numerical experiments on market data and SABR smiles show that the classical lower bound can be improved dramatically, whereas the upper bound is often close to optimal.

Suggested Citation

  • Julien Guyon & Romain Menegaux & Marcel Nutz, 2017. "Bounds for VIX futures given S&P 500 smiles," Finance and Stochastics, Springer, vol. 21(3), pages 593-630, July.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:3:d:10.1007_s00780-017-0334-6
    DOI: 10.1007/s00780-017-0334-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-017-0334-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-017-0334-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    2. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    3. Marco Scarsini, 1998. "Multivariate convex orderings, dependence, and stochastic equality," Post-Print hal-00541775, HAL.
    4. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    5. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    6. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    7. Erhan Bayraktar & Zhou Zhou, 2017. "On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
    8. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    9. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    10. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio Backhoff-Veraguas & Gudmund Pammer, 2019. "Stability of martingale optimal transport and weak optimal transport," Papers 1904.04171, arXiv.org, revised Dec 2020.
    2. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    3. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    4. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    5. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    6. Mathias Beiglbock & Benjamin Jourdain & William Margheriti & Gudmund Pammer, 2021. "Stability of the Weak Martingale Optimal Transport Problem," Papers 2109.06322, arXiv.org, revised Apr 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Guyon & Romain Menegaux & Marcel Nutz, 2016. "Bounds for VIX Futures given S&P 500 Smiles," Papers 1609.05832, arXiv.org, revised Jun 2017.
    2. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.
    3. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    4. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    5. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    6. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    7. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    8. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    9. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    10. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    11. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    12. Beatrice Acciaio & Martin Larsson & Walter Schachermayer, 2016. "The space of outcomes of semi-static trading strategies need not be closed," Papers 1606.00631, arXiv.org.
    13. Mathias Beiglboeck & Pierre Henry-Labordere & Nizar Touzi, 2017. "Monotone Martingale Transport Plans and Skorohod Embedding," Papers 1701.06779, arXiv.org.
    14. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    15. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    16. Beatrice Acciaio & Martin Larsson & Walter Schachermayer, 2017. "The space of outcomes of semi-static trading strategies need not be closed," Finance and Stochastics, Springer, vol. 21(3), pages 741-751, July.
    17. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    18. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    19. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    20. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..

    More about this item

    Keywords

    VIX futures; Price bounds; Model-free pricing; Robust hedging;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:3:d:10.1007_s00780-017-0334-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.