Computation of Greeks in jump-diffusion models using discrete Malliavin calculus
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2017.03.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Muroi, Yoshifumi & Suda, Shintaro, 2013. "Discrete Malliavin calculus and computations of greeks in the binomial tree," European Journal of Operational Research, Elsevier, vol. 231(2), pages 349-361.
- Suda, Shintaro & Muroi, Yoshifumi, 2015. "Computation of Greeks using binomial trees in a jump-diffusion model," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 93-110.
- Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
- Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Yoshifumi Muroi & Shintaro Suda, 2014. "Computation of Greeks using Binomial Tree," TMARG Discussion Papers 117, Graduate School of Economics and Management, Tohoku University.
- Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
- Reiichiro Kawai & Atsushi Takeuchi, 2013. "Computation of Greeks for asset price dynamics driven by stable and tempered stable processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1303-1316, July.
- Guillaume Bernis & Emmanuel Gobet & Arturo Kohatsu‐Higa, 2003. "Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 99-113, January.
- Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
- Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
- Kawai, Reiichiro & Takeuchi, Atsushi, 2010. "Sensitivity analysis for averaged asset price dynamics with gamma processes," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 42-49, January.
- Reiichiro Kawai & Arturo Kohatsu-Higa, 2010. "Computation of Greeks and Multidimensional Density Estimation for Asset Price Models with Time-Changed Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 301-321.
- Amin, Kaushik I, 1993. "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
- San‐Lin Chung & Mark Shackleton, 2002. "The Binomial Black–Scholes model and the Greeks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(2), pages 143-153, February.
- San‐Lin Chung & Weifeng Hung & Han‐Hsing Lee & Pai‐Ta Shih, 2011. "On the rate of convergence of binomial Greeks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(6), pages 562-597, June.
- El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
- Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suda, Shintaro & Muroi, Yoshifumi, 2015. "Computation of Greeks using binomial trees in a jump-diffusion model," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 93-110.
- Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
- Muroi, Yoshifumi & Suda, Shintaro, 2013. "Discrete Malliavin calculus and computations of greeks in the binomial tree," European Journal of Operational Research, Elsevier, vol. 231(2), pages 349-361.
- N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
- Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
- Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
- Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020.
"Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2016. "Early exercise decision in American options with dividends, stochastic volatility and jumps," Papers 1612.03031, arXiv.org.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2016. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility and Jumps," Swiss Finance Institute Research Paper Series 16-73, Swiss Finance Institute.
- Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012.
"Valuing American options using fast recursive projections,"
Working Papers
unige:41856, University of Geneva, Geneva School of Economics and Management.
- Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2016. "Valuing American options using fast recursive projections," Working Papers unige:82087, University of Geneva, Geneva School of Economics and Management.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2015. "Valuing American options using fast recursive projections," DEM Discussion Paper Series 15-20, Department of Economics at the University of Luxembourg.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
- Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
- Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
- Guidolin, Massimo & Timmermann, Allan, 2003.
"Option prices under Bayesian learning: implied volatility dynamics and predictive densities,"
Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
- Allan Timmermann & Massimo Guidolin, 2001. "Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities," FMG Discussion Papers dp397, Financial Markets Group.
- Guidolin, Massimo & Timmermann, Allan, 2001. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," LSE Research Online Documents on Economics 119091, London School of Economics and Political Science, LSE Library.
- Timmermann, Allan & Guidolin, Massimo, 2001. "Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities," CEPR Discussion Papers 3005, C.E.P.R. Discussion Papers.
- Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
- Siddiqi, Hammad, 2014. "The Financial Market Consequences of Growing Awareness: The Case of Implied Volatiltiy Skew," Risk and Sustainable Management Group Working Papers 162568, University of Queensland, School of Economics.
- Marcellino Gaudenzi & Alice Spangaro & Patrizia Stucchi, 2017. "Efficient European and American option pricing under a jump-diffusion process," Papers 1712.08137, arXiv.org.
- Lian, Yu-Min & Liao, Szu-Lang & Chen, Jun-Home, 2015. "State-dependent jump risks for American gold futures option pricing," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 115-133.
- Cheng Lee & Gwo-Hshiung Tzeng & Shin-Yun Wang, 2005. "A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index Options," Review of Quantitative Finance and Accounting, Springer, vol. 25(3), pages 255-275, November.
- U Hou Lok & Yuh-Dauh Lyuu, 2022. "A Valid and Efficient Trinomial Tree for General Local-Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 817-832, October.
- Michael Albert & Jason Fink & Kristin E. Fink, 2008. "Adaptive Mesh Modeling And Barrier Option Pricing Under A Jump‐Diffusion Process," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 31(4), pages 381-408, December.
- El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
- Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
More about this item
Keywords
Discrete Malliavin calculus; Binomial trees; Greeks; European options; Jump-diffusion model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:140:y:2017:i:c:p:69-93. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.