IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v13y2010i08ns0219024910006157.html
   My bibliography  Save this article

Markets As A Counterparty: An Introduction To Conic Finance

Author

Listed:
  • DILIP B. MADAN

    (Department of Finance, Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA)

  • ALEXANDER CHERNY

    (Department of Probability Theory, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119992, Russia)

Abstract

Markets are modeled as a counterparty accepting at zero cost a set of cash flows that are closed under addition, scaling and contain the nonnegative cash flows. Formulas are then provided for bid and ask prices in terms of this marketed cone. Additionally closed forms are obtained when parametric concave distortions introduced in Cherny and Madan (2009) define the marketed claims. Finally explicit expressions price call and put options at bid and ask. Three applications illustrate. The first estimates the movement of the cone through the financial crisis using data on bid and ask prices for S&P 500 index options. It is observed that the cone contracted significantly in 2008 and slowly opened up thereafter. The second application documents the improvements possible in terms of reduced ask prices by hedging at a flat Black-Scholes volatility even when the underlying assumptions for replication are violated. The third application considers a number of structured products written on daily returns to an underlying asset price and illustrates the use of our closed form expressions for the ask price as an objective function in designing hedges.

Suggested Citation

  • Dilip B. Madan & Alexander Cherny, 2010. "Markets As A Counterparty: An Introduction To Conic Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(08), pages 1149-1177.
  • Handle: RePEc:wsi:ijtafx:v:13:y:2010:i:08:n:s0219024910006157
    DOI: 10.1142/S0219024910006157
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024910006157
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024910006157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    2. Lokeshwar, Vikranth & Bharadwaj, Vikram & Jain, Shashi, 2022. "Explainable neural network for pricing and universal static hedging of contingent claims," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    3. Dilip B. Madan & Yazid M. Sharaiha, 2015. "Option overlay strategies," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1175-1190, July.
    4. Tak Kuen Siu & Robert J. Elliott, 2019. "Hedging Options In A Doubly Markov-Modulated Financial Market Via Stochastic Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-41, December.
    5. Purba Banerjee & Srikanth Iyer & Shashi Jain, 2023. "Multi-period static hedging of European options," Papers 2310.01104, arXiv.org, revised Oct 2023.
    6. Jingtang Ma & Dongya Deng & Harry Zheng, 2016. "Convergence analysis and optimal strike choice for static hedges of general path-independent pay-offs," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 593-603, April.
    7. Balbás, Alejandro & Serna, Gregorio, 2024. "Selling options to beat the market: Further empirical evidence," Research in International Business and Finance, Elsevier, vol. 67(PB).
    8. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    9. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    10. Ioannis Kyriakou & Nikos K. Nomikos & Nikos C. Papapostolou & Panos K. Pouliasis, 2016. "Affine†Structure Models and the Pricing of Energy Commodity Derivatives," European Financial Management, European Financial Management Association, vol. 22(5), pages 853-881, November.
    11. Carole Bernard & Junsen Tang, 2016. "Simplified Hedge For Path-Dependent Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-32, November.
    12. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    13. Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
    14. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    15. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    16. Jingtang Ma & Dongya Deng & Harry Zheng, 2014. "A robust algorithm and convergence analysis for static replications of nonlinear payoffs," Papers 1406.5430, arXiv.org.
    17. Tim Leung & Matthew Lorig, 2016. "Optimal static quadratic hedging," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1341-1355, September.
    18. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2023. "Data-driven Approach for Static Hedging of Exchange Traded Options," Papers 2302.00728, arXiv.org, revised Jan 2024.
    19. Vikranth Lokeshwar & Vikram Bhardawaj & Shashi Jain, 2019. "Neural network for pricing and universal static hedging of contingent claims," Papers 1911.11362, arXiv.org.
    20. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:13:y:2010:i:08:n:s0219024910006157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.