IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v17y2013i4p839-870.html
   My bibliography  Save this article

Outperformance portfolio optimization via the equivalence of pure and randomized hypothesis testing

Author

Listed:
  • Tim Leung
  • Qingshuo Song
  • Jie Yang

Abstract

We study the portfolio optimization problem of maximizing the outperformance probability over a random benchmark through dynamic trading with a fixed initial capital. Under a general incomplete market framework, this stochastic control problem can be formulated as a composite pure hypothesis testing problem. We analyze the connection between this pure testing problem and its randomized counterpart, and from the latter we derive a dual representation for the maximal outperformance probability. Moreover, in a complete market setting, we provide a closed-form solution to the problem of beating a leveraged exchange traded fund. For a general benchmark under an incomplete stochastic factor model, we provide the Hamilton–Jacobi–Bellman PDE characterization for the maximal outperformance probability. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Tim Leung & Qingshuo Song & Jie Yang, 2013. "Outperformance portfolio optimization via the equivalence of pure and randomized hypothesis testing," Finance and Stochastics, Springer, vol. 17(4), pages 839-870, October.
  • Handle: RePEc:spr:finsto:v:17:y:2013:i:4:p:839-870
    DOI: 10.1007/s00780-013-0213-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-013-0213-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-013-0213-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexander Schied, 2004. "On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals," Papers math/0407127, arXiv.org.
    2. Jarrow, Robert A., 2010. "Understanding the risk of leveraged ETFs," Finance Research Letters, Elsevier, vol. 7(3), pages 135-139, September.
    3. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    4. Alexander Schied, 2005. "Optimal Investments for Robust Utility Functionals in Complete Market Models," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 750-764, August.
    5. Birgit Rudloff, 2007. "Convex Hedging in Incomplete Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 437-452.
    6. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    7. Erhan Bayraktar & Yu-Jui Huang & Qingshuo Song, 2010. "Outperforming the market portfolio with a given probability," Papers 1006.3224, arXiv.org, revised Aug 2012.
    8. Krutchenko, R. & Melnikov, A., 2000. "Quantile hedging for a jump-diffusion financial market model," SFB 373 Discussion Papers 2000,34, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Obloj & Johannes Wiesel, 2018. "A unified Framework for Robust Modelling of Financial Markets in discrete time," Papers 1808.06430, arXiv.org, revised Dec 2019.
    2. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    3. Yao Tung Huang & Qingshuo Song & Harry Zheng, 2015. "Weak Convergence of Path-Dependent SDEs in Basket CDS Pricing with Contagion Risk," Papers 1506.00082, arXiv.org, revised May 2016.
    4. Ji, Shaolin & Shi, Xiaomin, 2018. "Reaching goals under ambiguity: Continuous-time optimal portfolio selection," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 63-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    2. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    3. Alexander Schied, 2005. "Optimal Investments for Risk- and Ambiguity-Averse Preferences: A Duality Approach," SFB 649 Discussion Papers SFB649DP2005-051, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Aug 2006.
    4. Schied, Alexander, 2005. "Optimal investments for risk- and ambiguity-averse preferences: A duality approach," SFB 649 Discussion Papers 2005-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Barski Michał, 2016. "On the shortfall risk control: A refinement of the quantile hedging method," Statistics & Risk Modeling, De Gruyter, vol. 32(2), pages 125-141, March.
    6. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    7. Thomas Knispel, 2012. "Asymptotics of robust utility maximization," Papers 1203.1191, arXiv.org.
    8. Micha{l} Barski, 2014. "On the shortfall risk control -- a refinement of the quantile hedging method," Papers 1402.3725, arXiv.org, revised Dec 2015.
    9. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    10. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    11. Hirbod Assa & Nikolay Gospodinov, 2017. "A Robust Approach to Hedging and Pricing in Imperfect Markets," Risks, MDPI, vol. 5(3), pages 1-20, July.
    12. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    13. Li, Jing & Xu, Mingxin, 2009. "Minimizing Conditional Value-at-Risk under Constraint on Expected Value," MPRA Paper 26342, University Library of Munich, Germany, revised 25 Oct 2010.
    14. Klusik, Przemyslaw & Palmowski, Zbigniew, 2011. "Quantile hedging for equity-linked contracts," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 280-286, March.
    15. Tomasz Tkalinski, 2014. "Convex hedging of non-superreplicable claims in discrete-time market models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 239-252, April.
    16. Jing Li & Mingxin Xu, 2013. "Optimal Dynamic Portfolio with Mean-CVaR Criterion," Risks, MDPI, vol. 1(3), pages 1-29, November.
    17. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    18. Schied, Alexander & Wu, Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers 2005-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Alexander Schied & Ching-Tang Wu, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers SFB649DP2005-025, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Sep 2005.
    20. Martin Glanzer & Georg Ch. Pflug & Alois Pichler, 2017. "Incorporating statistical model error into the calculation of acceptability prices of contingent claims," Papers 1703.05709, arXiv.org, revised Jan 2019.

    More about this item

    Keywords

    Portfolio optimization; Quantile hedging; Neyman–Pearson lemma; Stochastic benchmark; Hypothesis testing; G10; G12; G13; D81; 60H30; 91G10;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:17:y:2013:i:4:p:839-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.