IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1006.3224.html
   My bibliography  Save this paper

Outperforming the market portfolio with a given probability

Author

Listed:
  • Erhan Bayraktar
  • Yu-Jui Huang
  • Qingshuo Song

Abstract

Our goal is to resolve a problem proposed by Fernholz and Karatzas [On optimal arbitrage (2008) Columbia Univ.]: to characterize the minimum amount of initial capital with which an investor can beat the market portfolio with a certain probability, as a function of the market configuration and time to maturity. We show that this value function is the smallest nonnegative viscosity supersolution of a nonlinear PDE. As in Fernholz and Karatzas [On optimal arbitrage (2008) Columbia Univ.], we do not assume the existence of an equivalent local martingale measure, but merely the existence of a local martingale deflator.

Suggested Citation

  • Erhan Bayraktar & Yu-Jui Huang & Qingshuo Song, 2010. "Outperforming the market portfolio with a given probability," Papers 1006.3224, arXiv.org, revised Aug 2012.
  • Handle: RePEc:arx:papers:1006.3224
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1006.3224
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-weighted portfolios with negative parameter," Annals of Finance, Springer, vol. 11(3), pages 411-432, November.
    2. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-Weighted Portfolios with Negative Parameter," Papers 1504.01026, arXiv.org, revised Jul 2015.
    3. Tim Leung & Qingshuo Song & Jie Yang, 2013. "Outperformance portfolio optimization via the equivalence of pure and randomized hypothesis testing," Finance and Stochastics, Springer, vol. 17(4), pages 839-870, October.
    4. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    5. Steven Campbell & Ting-Kam Leonard Wong, 2021. "Functional portfolio optimization in stochastic portfolio theory," Papers 2103.10925, arXiv.org, revised Oct 2021.
    6. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    7. Tomoyuki Ichiba & Nicole Tianjiao Yang, 2020. "Relative Arbitrage Opportunities with Interactions among $N$ Investors," Papers 2006.15158, arXiv.org, revised Jul 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1006.3224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.