IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v7y2021i1d10.1186_s40854-021-00246-0.html
   My bibliography  Save this article

Cryptocurrencies, gold, and WTI crude oil market efficiency: a dynamic analysis based on the adaptive market hypothesis

Author

Listed:
  • Majid Mirzaee Ghazani

    (K. N. Toosi University of Technology)

  • Mohammad Ali Jafari

    (K. N. Toosi University of Technology)

Abstract

This study examined the evolving oil market efficiency by applying daily historical data to the three benchmark cryptocurrencies (Bitcoin, Ethereum, and Ripple), gold, and West Texas Intermediate (WTI) crude oil. The data coverage of daily returns was from August 2015 to April 2019. We applied two alternative tests to examine linear and nonlinear dependency, i.e., automatic portmanteau and generalized spectral tests. The analysis of observed results validated the adaptive market hypothesis (AMH) in all markets, but the degree of adaptability between the data was different. In this study, we also analyzed the existence of evolutionary behavior in the market. To achieve this goal, we checked the results by applying the rolling-window method with three different window lengths (50, 100, and 150 days) on the test statistics, which was consistent with the findings of AMH.

Suggested Citation

  • Majid Mirzaee Ghazani & Mohammad Ali Jafari, 2021. "Cryptocurrencies, gold, and WTI crude oil market efficiency: a dynamic analysis based on the adaptive market hypothesis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
  • Handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00246-0
    DOI: 10.1186/s40854-021-00246-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-021-00246-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-021-00246-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    3. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    4. Lei, Likun & Shang, Yue & Chen, Yongfei & Wei, Yu, 2019. "Does the financial crisis change the economic risk perception of crude oil traders? A MIDAS quantile regression approach," Finance Research Letters, Elsevier, vol. 30(C), pages 341-351.
    5. Opong, Kwaku K. & Mulholland, Gwyneth & Fox, Alan F. & Farahmand, Kambiz, 1999. "The behaviour of some UK equity indices: An application of Hurst and BDS tests1," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 267-282, September.
    6. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    7. Baur, Dirk G. & Dimpfl, Thomas & Jung, Robert C., 2012. "Stock return autocorrelations revisited: A quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 254-265.
    8. Herbert Simon, 2000. "Bounded rationality in social science: Today and tomorrow," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 25-39, March.
    9. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    10. Maria Rosa Borges, 2010. "Efficient market hypothesis in European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 16(7), pages 711-726.
    11. Akihiko Noda, 2021. "On the evolution of cryptocurrency market efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 28(6), pages 433-439, March.
    12. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    13. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    14. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    15. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    16. Kang, Sang Hoon & McIver, Ron P. & Hernandez, Jose Arreola, 2019. "Co-movements between Bitcoin and Gold: A wavelet coherence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    18. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    19. Lobato, Ignacio & Nankervis, John C & Savin, N E, 2001. "Testing for Autocorrelation Using a Modified Box-Pierce Q Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 187-205, February.
    20. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    21. Jones, Charles M & Kaul, Gautam, 1996. "Oil and the Stock Markets," Journal of Finance, American Finance Association, vol. 51(2), pages 463-491, June.
    22. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    23. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    24. Noda, Akihiko, 2016. "A test of the adaptive market hypothesis using a time-varying AR model in Japan," Finance Research Letters, Elsevier, vol. 17(C), pages 66-71.
    25. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
    26. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    27. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    28. Tran, Vu Le & Leirvik, Thomas, 2019. "A simple but powerful measure of market efficiency," Finance Research Letters, Elsevier, vol. 29(C), pages 141-151.
    29. Emmanuel Numapau Gyamfi, 2018. "Adaptive Market Hypothesis: Evidence from the Ghanaian Stock Market," Journal of African Business, Taylor & Francis Journals, vol. 19(2), pages 195-209, April.
    30. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    31. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    32. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    33. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
    34. Jin, Jingyu & Yu, Jiang & Hu, Yang & Shang, Yue, 2019. "Which one is more informative in determining price movements of hedging assets? Evidence from Bitcoin, gold and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    35. Sang Hoon Kang & Ron Mciver & Jose Arreola Hernandez, 2019. "Co-movements between Bitcoin and Gold: A wavelet coherence analysis," Post-Print hal-02468160, HAL.
    36. Lazăr, Dorina & Todea, Alexandru & Filip, Diana, 2012. "Martingale difference hypothesis and financial crisis: Empirical evidence from European emerging foreign exchange markets," Economic Systems, Elsevier, vol. 36(3), pages 338-350.
    37. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    38. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    39. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    40. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    41. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    42. Ghazani, Majid Mirzaee & Ebrahimi, Seyed Babak, 2019. "Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices," Finance Research Letters, Elsevier, vol. 30(C), pages 60-68.
    43. Stephen Hall & Timothy J Foxon & Ronan Bolton, 2017. "Investing in low-carbon transitions: energy finance as an adaptive market," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 280-298, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virginie Terraza & Aslı Boru İpek & Mohammad Mahdi Rounaghi, 2024. "The nexus between the volatility of Bitcoin, gold, and American stock markets during the COVID-19 pandemic: evidence from VAR-DCC-EGARCH and ANN models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    2. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    3. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    4. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    5. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    6. Ghazani, Majid Mirzaee & Ebrahimi, Seyed Babak, 2019. "Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices," Finance Research Letters, Elsevier, vol. 30(C), pages 60-68.
    7. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    8. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    9. Akbar, Muhammad & Ullah, Ihsan & Ali, Shahid & Rehman, Naser, 2024. "Adaptive market hypothesis: A comparison of Islamic and conventional stock indices," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 460-477.
    10. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    11. Mirzaee Ghazani, Majid & Khalili Araghi, Mansour, 2014. "Evaluation of the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the Tehran stock exchange," Research in International Business and Finance, Elsevier, vol. 32(C), pages 50-59.
    12. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    13. Wang, Qiyu & Chong, Terence Tai-Leung, 2021. "Factor pricing of cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    15. Siddique, Maryam, 2023. "Does the Adaptive Market Hypothesis Exist in Equity Market? Evidence from Pakistan Stock Exchange," OSF Preprints 9b5dx, Center for Open Science.
    16. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    17. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Okorie, David Iheke & Lin, Boqiang, 2021. "Adaptive market hypothesis: The story of the stock markets and COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    19. OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Robert Mudida & Nuruddeen Abu, 2021. "Market efficiency and volatility persistence of cryptocurrency during pre‐ and post‐crash periods of Bitcoin: Evidence based on fractional integration," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1318-1335, January.
    20. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00246-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.