Domain adaptation-based multistage ensemble learning paradigm for credit risk evaluation
Author
Abstract
Suggested Citation
DOI: 10.1186/s40854-024-00695-3
Download full text from publisher
References listed on IDEAS
- Pranith Kumar Roy & Krishnendu Shaw, 2021. "A multicriteria credit scoring model for SMEs using hybrid BWM and TOPSIS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
- Xu, Xinhan & Chen, Xiangfeng & Jia, Fu & Brown, Steve & Gong, Yu & Xu, Yifan, 2018. "Supply chain finance: A systematic literature review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 204(C), pages 160-173.
- Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
- Lang Zhang & Haiqing Hu & Dan Zhang, 2015. "A credit risk assessment model based on SVM for small and medium enterprises in supply chain finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-21, December.
- Cong Wang & Fangyue Yu & Zaixu Zhang & Jian Zhang & Baogui Xin, 2021. "Multiview Graph Learning for Small- and Medium-Sized Enterprises’ Credit Risk Assessment in Supply Chain Finance," Complexity, Hindawi, vol. 2021, pages 1-13, February.
- Lean Yu & Zebin Yang & Ling Tang, 2016. "A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 576-592, December.
- Lean Yu & Lihang Yu & Kaitao Yu, 2021. "A high-dimensionality-trait-driven learning paradigm for high dimensional credit classification," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
- Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
- Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
- Alex Langevin & Tyler Cody & Stephen Adams & Peter Beling, 2022. "Generative adversarial networks for data augmentation and transfer in credit card fraud detection," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 153-180, January.
- D Martens & T Van Gestel & M De Backer & R Haesen & J Vanthienen & B Baesens, 2010. "Credit rating prediction using Ant Colony Optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 561-573, April.
- Lean Yu & Xinxie Li & Ling Tang & Zongyi Zhang & Gang Kou, 2015. "Social credit: a comprehensive literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-18, December.
- Ying Liu & Lihua Huang, 2020. "Supply chain finance credit risk assessment using support vector machine–based ensemble improved with noise elimination," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477209, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Coussement, Kristof & Buckinx, Wouter, 2011. "A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application," European Journal of Operational Research, Elsevier, vol. 214(3), pages 732-738, November.
- Meiyan Li & Yingjun Fu, 2022. "Prediction of Supply Chain Financial Credit Risk Based on PCA-GA-SVM Model," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
- Ratri Parida & Manoj Kumar Dash & Anil Kumar & Edmundas Kazimieras Zavadskas & Sunil Luthra & Eyob Mulat‐weldemeskel, 2022. "Evolution of supply chain finance: A comprehensive review and proposed research directions with network clustering analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1343-1369, October.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
- Bastien Lextrait, 2021. "Scaling up SME's credit scoring scope with LightGBM," EconomiX Working Papers 2021-25, University of Paris Nanterre, EconomiX.
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Zhu, You & Zhou, Li & Xie, Chi & Wang, Gang-Jin & Nguyen, Truong V., 2019. "Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 22-33.
- Wu, Yaobin & Wang, Yingying & Xu, Xun & Chen, Xiangfeng, 2019. "Collect payment early, late, or through a third party's reverse factoring in a supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 245-259.
- Chih-Hung Hsu & Ru-Yue Yu & An-Yuan Chang & Wan-Ling Liu & An-Ching Sun, 2022. "Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks," Mathematics, MDPI, vol. 10(4), pages 1-41, February.
- Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Jiao Wang & Lima Zhao & Arnd Huchzermeier, 2021. "Operations‐Finance Interface in Risk Management: Research Evolution and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 355-389, February.
- Schmidt, Christoph G. & Wuttke, David A. & Heese, H. Sebastian & Wagner, Stephan M., 2023. "Antecedents of public reactions to supply chain glitches," International Journal of Production Economics, Elsevier, vol. 259(C).
- Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
- Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon & Wirachchaya Chanpuypetch, 2024. "Navigating Supply Chain Resilience: A Hybrid Approach to Agri-Food Supplier Selection," Mathematics, MDPI, vol. 12(10), pages 1-42, May.
- Zhang, Lu & Cui, Li & Chen, Lujie & Dai, Jing & Jin, Ziyi & Wu, Hao, 2023. "A hybrid approach to explore the critical criteria of online supply chain finance to improve supply chain performance," International Journal of Production Economics, Elsevier, vol. 255(C).
- Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
- Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
- Quan-Hoang Vuong & Huyen Thanh T. Nguyen & Thanh-Hang Pham & Manh-Toan Ho & Minh-Hoang Nguyen, 2021. "Assessing the ideological homogeneity in entrepreneurial finance research by highly cited publications," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
- Zhao, Na, 2019. "Managing interactive collaborative mega project supply chains under infectious risks," International Journal of Production Economics, Elsevier, vol. 218(C), pages 275-286.
More about this item
Keywords
Joint distribution adaptation; Ensemble learning; Supply chain finance; Small and medium-sized enterprises; Credit risk evaluation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-024-00695-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.