IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6670873.html
   My bibliography  Save this article

Multiview Graph Learning for Small- and Medium-Sized Enterprises’ Credit Risk Assessment in Supply Chain Finance

Author

Listed:
  • Cong Wang
  • Fangyue Yu
  • Zaixu Zhang
  • Jian Zhang
  • Baogui Xin

Abstract

In recent years, supply chain finance (SCF) is exploited to solve the financing difficulties of small- and medium-sized enterprises (SMEs). SME credit risk assessment is a critical part in the SCF system. The diffusion of SME credit risk may cause serious consequences, leading the whole supply chain finance system unstable and insecure. Compared with traditional credit risk assessment models, the supply chain relationship, credit condition of SME, and core enterprises should all be considered to rate SME credit risk in SCF. Traditional methods mix all indicators from different index systems. They cannot give a quantitative result on how these index systems work. Furthermore, traditional credit risk assessment models are heavily dependent on the number of annotated SME data. However, it is implausible to accumulate enough credit risky SMEs in advance. In this paper, we propose an adaptive heterogenous multiview graph learning method to tackle the small sample size problem for SMEs’ credit risk forecasting. Three graphs are constructed by using indicators from supply chain operation, SME financial indicator, and nonfinancial indicator individually. All the graphs are integrated in an adaptive manner, providing a quantitative explanation on how the three parts cooperate. The experimental analysis shows that the proposed method has good performance for determining whether SME is risky or nonrisky in SCF. From the perspective of SCF, SME financing ability is still the main factor to determine the credit risk of SME.

Suggested Citation

  • Cong Wang & Fangyue Yu & Zaixu Zhang & Jian Zhang & Baogui Xin, 2021. "Multiview Graph Learning for Small- and Medium-Sized Enterprises’ Credit Risk Assessment in Supply Chain Finance," Complexity, Hindawi, vol. 2021, pages 1-13, February.
  • Handle: RePEc:hin:complx:6670873
    DOI: 10.1155/2021/6670873
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6670873.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6670873.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6670873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6670873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.