A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment
Author
Abstract
Suggested Citation
DOI: 10.1007/s10696-015-9226-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- O. L. Mangasarian, 1965. "Linear and Nonlinear Separation of Patterns by Linear Programming," Operations Research, INFORMS, vol. 13(3), pages 444-452, June.
- Gang Kou & Yi Peng & Yong Shi & Morgan Wise & Weixuan Xu, 2005. "Discovering Credit Cardholders’ Behavior by Multiple Criteria Linear Programming," Annals of Operations Research, Springer, vol. 135(1), pages 261-274, March.
- Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Claudia Antal-Vaida, 2020. "Business Analytics Applications for Consumer Credits," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 11(1), pages 14-23.
- Yu, Lean & Huang, Xiaowen & Yin, Hang, 2020. "Can machine learning paradigm improve attribute noise problem in credit risk classification?," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 440-455.
- Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
- Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
- Chen, Liao & Ma, Shoufeng & Li, Changlin & Yang, Yuance & Wei, Wei & Cui, Runbang, 2024. "A spatial–temporal graph-based AI model for truck loan default prediction using large-scale GPS trajectory data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
- Yuquan Meng & Yuhang Yang & Haseung Chung & Pil-Ho Lee & Chenhui Shao, 2018. "Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
- Xiao, Jin & Zhong, Yu & Jia, Yanlin & Wang, Yadong & Li, Ruoyi & Jiang, Xiaoyi & Wang, Shouyang, 2024. "A novel deep ensemble model for imbalanced credit scoring in internet finance," International Journal of Forecasting, Elsevier, vol. 40(1), pages 348-372.
- Yu, Lean & Liang, Shaodong & Chen, Rongda & Lai, Kin Keung, 2022. "Predicting monthly biofuel production using a hybrid ensemble forecasting methodology," International Journal of Forecasting, Elsevier, vol. 38(1), pages 3-20.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lean Yu & Xinxie Li & Ling Tang & Zongyi Zhang & Gang Kou, 2015. "Social credit: a comprehensive literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-18, December.
- Z. R. Gabidullina, 2013. "A Linear Separability Criterion for Sets of Euclidean Space," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 145-171, July.
- Wanpracha Art Chaovalitwongse, 2008. "Novel quadratic programming approach for time series clustering with biomedical application," Journal of Combinatorial Optimization, Springer, vol. 15(3), pages 225-241, April.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Chao Liu & Fengfeng Gao & Mengwan Zhang & Yuanrui Li & Cun Qian, 2024. "Reference Vector-Based Multiobjective Clustering Ensemble Approach for Time Series Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 181-210, July.
- Emilio Carrizosa & Belen Martin-Barragan, 2011. "Maximizing upgrading and downgrading margins for ordinal regression," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 381-407, December.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
- Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Gang Kou & Chunwei Lou, 2012. "Multiple factor hierarchical clustering algorithm for large scale web page and search engine clickstream data," Annals of Operations Research, Springer, vol. 197(1), pages 123-134, August.
- Nieddu, Luciano & Patrizi, Giacomo, 2000. "Formal methods in pattern recognition: A review," European Journal of Operational Research, Elsevier, vol. 120(3), pages 459-495, February.
- Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
- Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
- Wikil Kwak & Yong Shi & Gang Kou, 2012. "Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 441-453, May.
- Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.
- Tang, Ling & Wu, Yao & Yu, Lean, 2018. "A randomized-algorithm-based decomposition-ensemble learning methodology for energy price forecasting," Energy, Elsevier, vol. 157(C), pages 526-538.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
More about this item
Keywords
Credit risk assessment; Deep belief network; Ensemble learning; Extreme learning machine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:4:d:10.1007_s10696-015-9226-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.