Pricing multi-asset options with tempered stable distributions
Author
Abstract
Suggested Citation
DOI: 10.1186/s40854-024-00649-9
Download full text from publisher
References listed on IDEAS
- Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
- William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
- Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
- Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
- Rombouts, Jeroen V.K. & Stentoft, Lars, 2011.
"Multivariate option pricing with time varying volatility and correlations,"
Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
- Jeroen Rombouts & Lars Stentoft, 2010. "Multivariate Option Pricing With Time Varying Volatility and Correlations," CIRANO Working Papers 2010s-23, CIRANO.
- Jeroen V.K. Rombouts & Lars Stentoft, 2010. "Multivariate Option Pricing with Time Varying Volatility and Correlations," Cahiers de recherche 1020, CIRPEE.
- ROMBOUTS, Jeroen J. K & STENTOFT, Lars, 2010. "Multivariate option pricing with time varying volatility and correlations," LIDAM Discussion Papers CORE 2010020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen V.K. Rombouts & Lars Stentoft, 2010. "Multivariate Option Pricing with Time Varying Volatility and Correlations," CREATES Research Papers 2010-19, Department of Economics and Business Economics, Aarhus University.
- Daniël Linders & Ben Stassen, 2016. "The multivariate Variance Gamma model: basket option pricing and calibration," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 555-572, April.
- Michael Grabchak & Gennady Samorodnitsky, 2010. "Do financial returns have finite or infinite variance? A paradox and an explanation," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 883-893.
- Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012.
"A spectral estimation of tempered stable stochastic volatility models and option pricing,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
- Junye Lia & Carlo Favero & Fulvio Ortu, 2010. "A Spectral Estimation of Tempered Stable Stochastic Volatility Models and Option Pricing," Working Papers 370, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Svetlana I. Boyarchenko & Sergei Z. Levendorskiǐ, 2000. "Option Pricing For Truncated Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 549-552.
- Chen, Wen & Wang, Song, 2020. "A 2nd-order ADI finite difference method for a 2D fractional Black–Scholes equation governing European two asset option pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 279-293.
- Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
- Küchler, Uwe & Tappe, Stefan, 2014. "Exponential stock models driven by tempered stable processes," Journal of Econometrics, Elsevier, vol. 181(1), pages 53-63.
- Yoshihiro Tashiro, 1977. "On methods for generating uniform random points on the surface of a sphere," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 295-300, December.
- Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010.
"Models for heavy-tailed asset returns,"
SFB 649 Discussion Papers
2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Borak, Szymon & Misiorek, Adam & Weron, Rafal, 2010. "Models for Heavy-tailed Asset Returns," MPRA Paper 25494, University Library of Munich, Germany.
- Szymon Borak & Adam Misiorek & Rafal Weron, 2010. "Models for Heavy-tailed Asset Returns," HSC Research Reports HSC/10/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
- Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
- Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
- Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
- M A Sánchez-Granero & J E Trinidad-Segovia & J Clara-Rahola & A M Puertas & F J De las Nieves, 2017. "A model for foreign exchange markets based on glassy Brownian systems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
- Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
- Grabchak, Michael, 2021. "An exact method for simulating rapidly decreasing tempered stable distributions in the finite variation case," Statistics & Probability Letters, Elsevier, vol. 170(C).
- Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010.
"Tempered stable and tempered infinitely divisible GARCH models,"
Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
- Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2011. "Tempered stable and tempered infinitely divisible GARCH models," Working Paper Series in Economics 28, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
- Svetlana Boyarchenko & Sergei Levendorskii, 2005.
"American options: the EPV pricing model,"
Annals of Finance, Springer, vol. 1(3), pages 267-292, August.
- Svetlana Boyarchenko & Sergei Levendorskii, 2004. "American options: the EPV pricing model," Finance 0405024, University Library of Munich, Germany.
- Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019.
"Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
- Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2018. "SINH-acceleration: efficient evaluation of probability distributions, option pricing, and Monte-Carlo simulations," Papers 1808.05295, arXiv.org.
- Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
- Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.
- Uwe Kuchler & Stefan Tappe, 2019. "Exponential stock models driven by tempered stable processes," Papers 1907.05142, arXiv.org.
- Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
- Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
- Chengwei Zhang & Zhiyuan Zhang, 2018. "Sequential sampling for CGMY processes via decomposition of their time changes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 522-534, September.
- Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
- Young Shin Kim, 2021. "Sample Path Generation of the Stochastic Volatility CGMY Process and Its Application to Path-Dependent Option Pricing," JRFM, MDPI, vol. 14(2), pages 1-18, February.
More about this item
Keywords
Multi-asset option pricing; Tempered stable distributions; Diagonal model; Lévy processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00649-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.