IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v170y2021ics0167715220303187.html
   My bibliography  Save this article

An exact method for simulating rapidly decreasing tempered stable distributions in the finite variation case

Author

Listed:
  • Grabchak, Michael

Abstract

Rapidly decreasing tempered stable (RDTS) distributions are useful models for financial applications. However, there has been no exact method for simulation available in the literature. We remedy this by introducing an exact simulation method in the finite variation case. Our methodology works for the wider class of p-RDTS distributions.

Suggested Citation

  • Grabchak, Michael, 2021. "An exact method for simulating rapidly decreasing tempered stable distributions in the finite variation case," Statistics & Probability Letters, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:stapro:v:170:y:2021:i:c:s0167715220303187
    DOI: 10.1016/j.spl.2020.109015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220303187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.109015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    2. repec:ulb:ulbeco:2013/136280 is not listed on IDEAS
    3. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    4. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    5. Bianchi, Michele Leonardo & Rachev, Svetlozar T. & Kim, Young Shin & Fabozzi, Frank J., 2011. "Tempered infinitely divisible distributions and processes," Working Paper Series in Economics 26, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    6. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Grabchak, 2022. "Discrete Tempered Stable Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1877-1890, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011. "Time series analysis for financial market meltdowns," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
    2. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    3. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    4. Schosser, Stephan & Vogt, Bodo, 2011. "The public loss game: An experimental study of public bads," Working Paper Series in Economics 33, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    5. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    6. Schaffer, Axel, 2011. "Appropriate policy measures to attract private capital in consideration of regional efficiency in using infrastructure and human capital," Working Paper Series in Economics 31, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    7. Søren Asmussen, 2022. "On the role of skewness and kurtosis in tempered stable (CGMY) Lévy models in finance," Finance and Stochastics, Springer, vol. 26(3), pages 383-416, July.
    8. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    9. Uwe Kuchler & Stefan Tappe, 2019. "Tempered stable distributions and processes," Papers 1907.05141, arXiv.org.
    10. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    11. Uwe Kuchler & Stefan Tappe, 2019. "Exponential stock models driven by tempered stable processes," Papers 1907.05142, arXiv.org.
    12. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    13. Young Shin Kim, 2021. "Sample Path Generation of the Stochastic Volatility CGMY Process and Its Application to Path-Dependent Option Pricing," JRFM, MDPI, vol. 14(2), pages 1-18, February.
    14. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    15. Young Shin Kim, 2021. "Sample path generation of the stochastic volatility CGMY process and its application to path-dependent option pricing," Papers 2101.11001, arXiv.org.
    16. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    17. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    18. Küchler, Uwe & Tappe, Stefan, 2014. "Exponential stock models driven by tempered stable processes," Journal of Econometrics, Elsevier, vol. 181(1), pages 53-63.
    19. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    20. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:170:y:2021:i:c:s0167715220303187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.