On methods for generating uniform random points on the surface of a sphere
Author
Abstract
Suggested Citation
DOI: 10.1007/BF02532791
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
- Kai-Tai Fang & Run-Ze Li, 1997. "Some methods for generating both an NT-net and the uniform distribution on a Stiefel manifold and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 24(1), pages 29-46, March.
- Yang, Zhenhai & Pang, W.K. & Hou, S.H. & Leung, P.K., 2005. "On a combination method of VDR and patchwork for generating uniform random points on a unit sphere," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 23-36, July.
- Jiajuan Liang & Kai-Tai Fang & Fred Hickernell, 2008. "Some necessary uniform tests for spherical symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 679-696, September.
- Liang, Jia-Juan & Bentler, Peter M., 1999. "A t-distribution plot to detect non-multinormality," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 31-44, March.
- Hörmann, Wolfgang & Sak, Halis, 2010. "t-Copula generation for control variates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 782-790.
- Harman, Radoslav & Lacko, Vladimír, 2010. "On decompositional algorithms for uniform sampling from n-spheres and n-balls," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2297-2304, November.
- El Khaldi Khaldoun & Saleeby Elias G., 2017. "On the tangent model for the density of lines and a Monte Carlo method for computing hypersurface area," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 13-20, March.
- Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:29:y:1977:i:1:p:295-300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.