IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0022826.html
   My bibliography  Save this article

Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

Author

Listed:
  • Stephan Bialonski
  • Martin Wendler
  • Klaus Lehnertz

Abstract

We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

Suggested Citation

  • Stephan Bialonski & Martin Wendler & Klaus Lehnertz, 2011. "Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0022826
    DOI: 10.1371/journal.pone.0022826
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022826
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022826&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0022826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charo I Del Genio & Hyunju Kim & Zoltán Toroczkai & Kevin E Bassler, 2010. "Efficient and Exact Sampling of Simple Graphs with Given Arbitrary Degree Sequence," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-7, April.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Tsonis, A.A. & Roebber, P.J., 2004. "The architecture of the climate network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 497-504.
    4. Frank Emmert-Streib & Matthias Dehmer, 2010. "Influence of the Time Scale on the Construction of Financial Networks," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    5. Abe, Sumiyoshi & Suzuki, Norikazu, 2004. "Small-world structure of earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 357-362.
    6. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    7. Tian Qiu & Bo Zheng & Guang Chen, 2010. "Adaptive financial networks with static and dynamic thresholds," Papers 1002.3432, arXiv.org.
    8. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    9. Maslov, Sergei & Sneppen, Kim & Zaliznyak, Alexei, 2004. "Detection of topological patterns in complex networks: correlation profile of the internet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 529-540.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Wen & Delong Zhang & Bishan Liang & Ruibin Zhang & Zengjian Wang & Junjing Wang & Ming Liu & Ruiwang Huang, 2015. "Reconfiguration of the Brain Functional Network Associated with Visual Task Demands," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang-Jin Wang & Chi Xie & Peng Zhang & Feng Han & Shou Chen, 2014. "Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, May.
    2. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    3. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    4. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    5. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    6. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    7. Frank Emmert-Streib & Matthias Dehmer, 2010. "Influence of the Time Scale on the Construction of Financial Networks," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    8. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    9. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    10. Xu, Shiyun & Shao, Menglin & Qiao, Wenxuan & Shang, Pengjian, 2018. "Generalized AIC method based on higher-order moments and entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1127-1138.
    11. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    12. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    13. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    15. Zhu, Jia & Wei, Daijun, 2021. "Analysis of stock market based on visibility graph and structure entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).
    16. Chorozoglou, D. & Papadimitriou, E. & Kugiumtzis, D., 2019. "Investigating small-world and scale-free structure of earthquake networks in Greece," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 143-152.
    17. Grigory Bautin & Valery Kalyagin & Alexander Koldanov & Petr Koldanov & Panos Pardalos, 2013. "Simple measure of similarity for the market graph construction," Computational Management Science, Springer, vol. 10(2), pages 105-124, June.
    18. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    19. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    20. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0022826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.