IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1001.2549.html
   My bibliography  Save this paper

Segmentation algorithm for non-stationary compound Poisson processes

Author

Listed:
  • Bence Toth
  • Fabrizio Lillo
  • J. Doyne Farmer

Abstract

We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of the time series. The process is composed of consecutive patches of variable length, each patch being described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated to a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galvan, et al., Phys. Rev. Lett., 87, 168105 (2001). We show that the new algorithm outperforms the original one for regime switching compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.

Suggested Citation

  • Bence Toth & Fabrizio Lillo & J. Doyne Farmer, 2010. "Segmentation algorithm for non-stationary compound Poisson processes," Papers 1001.2549, arXiv.org, revised Feb 2011.
  • Handle: RePEc:arx:papers:1001.2549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1001.2549
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner (ed.), 2009. "Handbook of Financial Markets: Dynamics and Evolution," Elsevier Monographs, Elsevier, edition 1, number 9780123742582.
    2. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    3. Austin Gerig, 2008. "A Theory for Market Impact: How Order Flow Affects Stock Price," Papers 0804.3818, arXiv.org, revised Jul 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kucharczyk, Daniel & Wyłomańska, Agnieszka & Zimroz, Radosław, 2017. "Structural break detection method based on the Adaptive Regression Splines technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 499-511.
    2. Siew Ann Cheong, 2013. "Econophysics: An Experimental Course for Advanced Undergraduates in the Nanyang Technological University," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 79-99, July.
    3. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    4. Kucharczyk, Daniel & Wyłomańska, Agnieszka & Sikora, Grzegorz, 2018. "Variance change point detection for fractional Brownian motion based on the likelihood ratio test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 439-450.
    5. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    6. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    7. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    8. Lillo, Fabrizio & Pirino, Davide, 2015. "The impact of systemic and illiquidity risk on financing with risky collateral," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 180-202.
    9. Jonathan Donier & Julius Bonart, 2014. "A Million Metaorder Analysis of Market Impact on the Bitcoin," Papers 1412.4503, arXiv.org, revised Sep 2015.
    10. Sikora, Grzegorz & Wyłomańska, Agnieszka & Krapf, Diego, 2018. "Recurrence statistics for anomalous diffusion regime change detection," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 380-394.
    11. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2012. "The Japanese economy in crises: A time series segmentation study," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-81.
    12. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    13. Elia Zarinelli & Michele Treccani & J. Doyne Farmer & Fabrizio Lillo, 2014. "Beyond the square root: Evidence for logarithmic dependence of market impact on size and participation rate," Papers 1412.2152, arXiv.org.
    14. Michele Tumminello & Fabrizio Lillo & Jyrki Piilo & Rosario N. Mantegna, 2011. "Identification of clusters of investors from their real trading activity in a financial market," Papers 1107.3942, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bence Toth & Imon Palit & Fabrizio Lillo & J. Doyne Farmer, 2011. "Why is order flow so persistent?," Papers 1108.1632, arXiv.org, revised Nov 2014.
    2. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    3. Elia Zarinelli & Michele Treccani & J. Doyne Farmer & Fabrizio Lillo, 2014. "Beyond the square root: Evidence for logarithmic dependence of market impact on size and participation rate," Papers 1412.2152, arXiv.org.
    4. Henao-Londono, Juan C. & Guhr, Thomas, 2022. "Foreign exchange markets: Price response and spread impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    5. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    6. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    7. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    8. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    9. Nicolas Huth & Frédéric Abergel, 2012. "The times change: multivariate subordination, empirical facts," Post-Print hal-00620841, HAL.
    10. Thomas Fischer, 2017. "Can Redistribution by Means of a Progressive Labor Income-Taxation Transfer System Increase Financial Stability?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-3.
    11. Karol Wawrzyniak & Wojciech Wi'slicki, 2013. "Grand canonical minority game as a sign predictor," Papers 1309.3399, arXiv.org.
    12. Sarah Mignot & Fabio Tramontana & Frank Westerhoff, 2021. "Speculative asset price dynamics and wealth taxes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 641-667, December.
    13. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    14. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    15. Zhu, Mei & Wang, Duo & Guo, Maozheng, 2011. "Stochastic equilibria of an asset pricing model with heterogeneous beliefs and random dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 131-147, January.
    16. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    17. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    18. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    19. Stephan Grimm & Thomas Guhr, 2019. "How spread changes affect the order book: comparing the price responses of order deletions and placements to trades," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(6), pages 1-11, June.
    20. Serena Sordi & Marwil J. Dávila-Fernández, 2020. "Investment behaviour and “bull & bear” dynamics: modelling real and stock market interactions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 867-897, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1001.2549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.