IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.08386.html
   My bibliography  Save this paper

Critical slowing down associated with critical transition and risk of collapse in cryptocurrency

Author

Listed:
  • Chengyi Tu
  • Paolo DOdorico
  • Samir Suweis

Abstract

The year 2017 saw the rise and fall of the crypto-currency market, followed by high variability in the price of all crypto-currencies. In this work, we study the abrupt transition in crypto-currency residuals, which is associated with the critical transition (the phenomenon of critical slowing down) or the stochastic transition phenomena. We find that, regardless of the specific crypto-currency or rolling window size, the autocorrelation always fluctuates around a high value, while the standard deviation increases monotonically. Therefore, while the autocorrelation does not display signals of critical slowing down, the standard deviation can be used to anticipate critical or stochastic transitions. In particular, we have detected two sudden jumps in the standard deviation, in the second quarter of 2017 and at the beginning of 2018, which could have served as early warning signals of two majors price collapses that have happened in the following periods. We finally propose a mean-field phenomenological model for the price of crypto-currency to show how the use of the standard deviation of the residuals is a better leading indicator of the collapse in price than the time series' autocorrelation. Our findings represent a first step towards a better diagnostic of the risk of critical transition in the price and/or volume of crypto-currencies.

Suggested Citation

  • Chengyi Tu & Paolo DOdorico & Samir Suweis, 2018. "Critical slowing down associated with critical transition and risk of collapse in cryptocurrency," Papers 1806.08386, arXiv.org, revised Nov 2019.
  • Handle: RePEc:arx:papers:1806.08386
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.08386
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Tan & Siew Cheong, 2014. "Critical slowing down associated with regime shifts in the US housing market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(2), pages 1-10, February.
    2. Michel Rauchs & Garrick Hileman, 2017. "Global Cryptocurrency Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201704-gcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
    3. Hayette Gatfaoui & Isabelle Nagot & Philippe de Peretti, 2016. "Are critical slowing down indicators useful to detect financial crises?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01339815, HAL.
    4. Neil Gandal & Hanna Halaburda, 2014. "Competition in the Cryptocurrency Market," Staff Working Papers 14-33, Bank of Canada.
    5. Marco Alberto Javarone & Craig Steven Wright, 2018. "From Bitcoin to Bitcoin Cash: a network analysis," Papers 1804.02350, arXiv.org, revised Jul 2018.
    6. John M. Drake & Blaine D. Griffen, 2010. "Early warning signals of extinction in deteriorating environments," Nature, Nature, vol. 467(7314), pages 456-459, September.
    7. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    8. D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
    9. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    10. Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    11. Igor Volkov & Jayanth R. Banavar & Stephen P. Hubbell & Amos Maritan, 2003. "Neutral theory and relative species abundance in ecology," Nature, Nature, vol. 424(6952), pages 1035-1037, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Wu & Spencer Wheatley & Didier Sornette, 2018. "Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations," Papers 1803.03088, arXiv.org, revised May 2018.
    2. Lars Steinert & Christian Herff, 2018. "Predicting altcoin returns using social media," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    3. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    4. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    5. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    6. Carlo Campajola & Marco D'Errico & Claudio J. Tessone, 2022. "MicroVelocity: rethinking the Velocity of Money for digital currencies," Papers 2201.13416, arXiv.org, revised May 2023.
    7. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    8. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    9. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    10. Guglielmo Maria Caporale & Alex Plastun & Viktor Oliinyk, 2019. "Bitcoin fluctuations and the frequency of price overreactions," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 109-131, June.
    11. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    12. Silvia Bartolucci & Fabio Caccioli & Pierpaolo Vivo, 2019. "A percolation model for the emergence of the Bitcoin Lightning Network," Papers 1912.03556, arXiv.org.
    13. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    14. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
    15. Nino Antulov-Fantulin & Dijana Tolic & Matija Piskorec & Zhang Ce & Irena Vodenska, 2018. "Inferring short-term volatility indicators from Bitcoin blockchain," Papers 1809.07856, arXiv.org.
    16. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Multifractal behavior of price and volume changes in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 54-61.
    17. Ayana T Aspembitova & Ling Feng & Lock Yue Chew, 2021. "Behavioral structure of users in cryptocurrency market," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-19, January.
    18. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    19. Ladislav Kristoufek, 2015. "What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    20. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.08386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.