IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v8y2019i5d10.1007_s13676-019-00147-4.html
   My bibliography  Save this article

An assignment model for public transport networks with both schedule- and frequency-based services

Author

Listed:
  • Morten Eltved

    (Technical University of Denmark)

  • Otto Anker Nielsen

    (Technical University of Denmark)

  • Thomas Kjær Rasmussen

    (Technical University of Denmark)

Abstract

This paper presents an assignment modeling framework for public transport networks with co-existing schedule- and frequency-based services. The paper develops, applies and discusses a joint model, which aims at representing the behavior of passengers as realistically as possible. The model consists of a choice set generation phase followed by a multinomial logit route choice model and assignment of flow to the generated alternatives. The choice set generation uses an event dominance principle to exclude alternatives with costs above a certain cost threshold. Furthermore, a heuristic for aggregating overlapping lines is proposed. The results from applying the model to a case study in the Greater Copenhagen Area show that the level of service obtained in the unified network model of mixed services is placed between the level of service for strictly schedule-based and strictly frequency-based networks. The results also show that providing timetable information to the passengers improve their utility function as compared to only providing information on frequencies.

Suggested Citation

  • Morten Eltved & Otto Anker Nielsen & Thomas Kjær Rasmussen, 2019. "An assignment model for public transport networks with both schedule- and frequency-based services," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 769-793, December.
  • Handle: RePEc:spr:eurjtl:v:8:y:2019:i:5:d:10.1007_s13676-019-00147-4
    DOI: 10.1007/s13676-019-00147-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-019-00147-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-019-00147-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cascetta, Ennio & Coppola, Pierluigi, 2016. "Assessment of schedule-based and frequency-based assignment models for strategic and operational planning of high-speed rail services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 93-108.
    2. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    3. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    4. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Otto Nielsen & Rasmus Frederiksen, 2006. "Optimisation of timetable-based, stochastic transit assignment models based on MSA," Annals of Operations Research, Springer, vol. 144(1), pages 263-285, April.
    7. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2018. "Stochastic user equilibrium with a bounded choice model," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 254-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gardner, Clara Brimnes & Nielsen, Sara Dorthea & Eltved, Morten & Rasmussen, Thomas Kjær & Nielsen, Otto Anker & Nielsen, Bo Friis, 2021. "Calculating conditional passenger travel time distributions in mixed schedule- and frequency-based public transport networks using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 1-17.
    2. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    3. Francesco Russo & Antonio Comi, 2021. "Sustainable Urban Delivery: The Learning Process of Path Costs Enhanced by Information and Communication Technologies," Sustainability, MDPI, vol. 13(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    2. Sun, S. & Szeto, W.Y., 2018. "Logit-based transit assignment: Approach-based formulation and paradox revisit," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 191-215.
    3. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    4. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
    6. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    7. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    8. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    9. Homero Larrain & Juan Muñoz, 2008. "Public Transit Corridor Assignment Assuming Congestion Due to Passenger Boarding and Alighting," Networks and Spatial Economics, Springer, vol. 8(2), pages 241-256, September.
    10. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    11. Jesper Bláfoss Ingvardson & Jonas Kornerup Jensen & Otto Anker Nielsen, 2017. "Analysing improvements to on-street public transport systems: a mesoscopic model approach," Public Transport, Springer, vol. 9(1), pages 385-409, July.
    12. Marie Karen Anderson & Otto Anker Nielsen & Carlo Giacomo Prato, 2017. "Multimodal route choice models of public transport passengers in the Greater Copenhagen Area," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 221-245, September.
    13. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    14. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    15. Pineda, Cristobal & Schwarz, Daniel & Godoy, Esteban, 2016. "Comparison of passengers' behavior and aggregate demand levels on a subway system using origin-destination surveys and smartcard data," Research in Transportation Economics, Elsevier, vol. 59(C), pages 258-267.
    16. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    17. Wang, Zhichao & Jiang, Rui & Jiang, Yu & Gao, Ziyou & Liu, Ronghui, 2024. "Modelling bus bunching along a common line corridor considering passenger arrival time and transfer choice under stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    18. Oded Cats & Zafeira Gkioulou, 2017. "Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 247-270, September.
    19. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    20. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & John Jairo Posada-Henao & Hector Lopez-Ospina & Jhan Kevin Gil-Marin, 2022. "Entropy-Based Transit Tour Synthesis Using Fuzzy Logic," Sustainability, MDPI, vol. 14(21), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:8:y:2019:i:5:d:10.1007_s13676-019-00147-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.